
Captor Report

Ben Agro

May 4, 2023

Contents

1 Introduction 1

2 Design Philosophy 1
2.1 Simulation-First . 2
2.2 Future-Proofing . 4
2.3 Simplicity . 4

3 Background And Related Work 4
3.1 Hardware . 5
3.2 Software . 5
3.3 Theory . 6

4 Challenge Task Solutions 6
4.1 Notation . 7
4.2 System Overview . 7
4.3 Stationkeeping . 8
4.4 Waypoint Navigation . 9
4.5 Online Obstacle Avoidance . 10

5 Results and Evaluation 14
5.1 Stationkeeping . 14
5.2 Waypoint Navigation . 14
5.3 Online Obstacle Avoidance . 15

6 Lessons Learned 16

1 Introduction

This report summarizes our capstone design project. We, team Captors, have designed, built, and pro-
grammed an autonomous drone, named Captor, that can understand and navigate within its environment.
Our design was motivated and assessed using five challenge tasks (CT) of increasing difficulty: drone bring-
up (CT1), station-keeping (CT2), waypoint navigation (CT3), obstacle avoidance (CT4), and environment
sensing (CT5). Given the vast design space, there are many potential development procedures and solutions
to these problems. In this report, we describe our team’s design philosophy, background, and related work,
how we approached and solved each CT, the results of our efforts, and the lessons we learned along the way.

2 Design Philosophy

There are three tenets of our design philosophy: (1) simulation-first, (2) future-proofing, and (3) simplicity.
This section describes each principle and how it manifested in our team.

1

(a) Gazebo (b) IMX219

Figure 1: Images from MyhalSim. Figure 1a shows an external view from Gazebo [1], and fig. 1b shows
the simulated IMX219 color camera (after undistortion).

2.1 Simulation-First

The first tenet of our design philosophy is simulation first. Simulation provides many advantages during the
design process, which we detail below.

Rapid iteration: Limited flight time in the physical Myhal 580 (MY580) testing environment hinders
development. Simulation allows for rapid iteration on hardware (e.g., the layout of sensors) and software
designs (e.g., autonomy systems).

Robust testing: Simulation allows for much more testing and pre-flight verification of our solutions.
For each CT, we had a suite of tests to pass in simulation before testing on the actual drone. Figure 2 shows
an example of CT4 in simulation [2].

Testing in simulation reduces the risk of crashes and hardware malfunction, which hinder development.
Furthermore, simulation allows us to enumerate different challenge task configurations (e.g., landmark and
obstacle locations) to test edge cases we would otherwise want to avoid in real life.

Towards the simulation-first design philosophy, we developed MyhalSim; a high-fidelity simulation of
the MY580 testing environment built in Gazebo 11 [1]. See fig. 1 for images from this simulation. MyhalSim
simulates

• MY580 testing environment with miscellaneous objects (tables and chairs), obstacles, and calibration
checkboard, (fig. 1a),

• Captor drone, including

– PX4 flight controller [3] [4],

– Realsense T265 tracking camera (fig. 1b) with odometry estimates and fisheye images [5],

– IMX219 color camera (fig. 1b),

– Vicon dots frame Fd,

• Controller for arming the PX4 and changing flight modes,

• Vicon system for the ground truth transformation between the world frame Fw and the Vicon dots
frame Fd.

In this same spirit, we use log-replay to reduce the sim-to-real gap in our testing. Log replay involves
collecting data from the real drone to test obstacle detection, mapping, and camera calibration. Figure 3
shows an example frame from log replay data used to develop detection and mapping.

2

(a) Gazebo (b) Global Path (c) Occupancy Map

Figure 2: Visualizations from the simulation of CT4.

(a) IMX219 (b) Detection (c) RViz (d) ASCII Map

Figure 3: An example of log-replay used to design the detection and mapping system for CT4.

3

CAPTOR Hardware

ROS Noetic

Ubuntu 20.04

Python 3

CAPTOR
Software

Figure 4: Our hardware and software stack.

2.2 Future-Proofing

The second tenet of our design philosophy is future-proofing ; we want to prevent our intermediate designs
from incurring technical debt in the future, and we design our system with longevity in mind [6]. While we
did not have the freedom to select hardware, we chose the latest and greatest operating systems, firmware,
and software during our design process:

• We ran a custom Ubuntu 20.04 on the Nvidia Jetson Nano [7], which supports the latest software
packages (e.g., Robot Operating System (ROS) Noetic [8]). Furthermore, Ubuntu 20.04 is supported
until 2030 (unlike the default Ubuntu 18.04 operating system that ships with the Jetson Nano).

• We used ROS Noetic [8], the latest ROS 1 version.

• ROS Noetic allowed us to program in Python 3 and use all of the latest versions of open-source software
packages like OpenCV [9] and NumPy [10].

See fig. 4 for an illustration of our software stack.
On top of employing the latest open-source solutions, we designed the Captor system for each CT with

future tasks in mind. For example, for CT2 (stationkeeping), we already implemented a global and local
planning framework, which was easily extensible to CT3 and CT4.

2.3 Simplicity

The third tenet of our design philosophy is simplicity [2]. We try to avoid over-engineered solutions and
use open-source implementations wherever possible, including simulation with Gazebo [1], robot operating
system with ROS, visual-inertial odometry using the Realsense T265, flight control using the PX4, computer
vision with OpenCV, and fast A* on grids with pyastar2d [11].

Further, we try and fail-fast - rapidly rule out possible solutions in parallel to find the most straightforward
path forwards. An example of this was in our initial work on CT4. Initially three team members explored
the merits of different approaches (occupancy mapping with stereo from the T265, occupancy mapping with
the IMX219, and reactive collision avoidance with the IMX219). We quickly determined which idea had the
most promise by identifying potential issues with each solution.

3 Background And Related Work

This section outlines the hardware, software frameworks, and background theory used throughout our design
work.

4

1

3
4

2

5

6

7

8

9

10

11

1213

Front

Rear

Top

Bottom

Figure 5: Labelled hardware and frames of Captor.

3.1 Hardware

Captor uses a carbon fiber frame for its lightweight and high rigidity. To accommodate all the peripherals,
a custom 3D-printed chassis is attached to the underside of the frame. Figure 5 labels the various peripherals
and components mounted on the frame and chassis:

1. Sony IMX219: A monocular color camera, useful for computer vision tasks.

2. PX4 Mini PDB: A power distribution board (PDB) that supplies power to PX4 Mini and motors.

3. Spedix ESC: An electronic speed controller (ESC) that controls the motors.

4. PX4 Mini: A flight controller that fuses sensor data to generate a state estimate, handles remote-
control (RC) commands and dictates motor speeds based on flight commands.

5. Gemfan 5” 3 blade propeller: Four plastic propellers, chosen for safety.

6. ARCHER R4: A lightweight RC receiver.

7. Intel RealSense T265: A stereo camera that performs visual-inertial odometry to generate a pose
estimate.

8. XT60 battery connector: Wiring that splits power from LiPo battery to PX4 Mini PDB and Jetson
Nano.

9. Vicon Mount: The location where motion capture (Vicon) dots are mounted on the drone, used by
the Vicon system to obtain “ground truth” pose estimates.

10. Battery straps: Used to secure the battery to the chassis.

11. TeraRanger Evo 60m: A time-of-flight sensor used to measure the distance to ground with a mini-
mum range of 0.6m and maximum range of 60m.

12. NVIDIA Jetson Nano 4GB: A small computer used for autonomous drone control, which can
communicate with the PX4 through the mavros framework [12].

13. Barrel jack and voltage regulator: Used to supply regulated power from the battery to Jetson
Nano.

3.2 Software

The Jetson Nano was our development platform, running a custom Ubuntu 20.04 OS image [7]. Our devel-
opment used the following software:

• ROS Noetic: the most recent ROS release, which supports Python 3. We use the following ROS
packages:

– rospy: a pure python client for ROS.

5

– mavros: provides a communication driver with the PX4 autopilot, allowing us, among many
other things, to send position commands and pose estimates to the PX4 and receive the fused
PX4 state estimate [12].

– tf : allows for convenient querying of transformations by maintaining the relationship between
frames in a tree structure buffered in time.

• Python 3, and the following open-source packages:

– NumPy: An array-based computing framework for fast multi-dimensional array operations and
matrix math in Python [10].

– OpenCV: An open-source computer vision library with Python bindings for all computer vision-
related tasks such as undistortion, camera calibration, and image transformations [9].

– pyastar: A blazing fast grid based A* implemented in C++ and wrapped for Python [11].

3.3 Theory

This section gives a brief background theory on the ideas and algorithms used during our design process.
Please refer to the cited sources for more information.

• Rigid Transformation Matrices: Matrices that live in the special Euclidian group Tab ∈ SE(3) =

{
[
Cab pba

a

0T 1

]
∈ R4×4|CT

abCab = 1,det(C) = 1} that represent rotations and translations. Tab repre-

sents a transformation matrix that turns a point expressed in frame b, pb, into a point expressed in
frame a, pa: pa = Tabpb. Transformations can be composed via matrix multiplication: Tab = TacTcb

[13].

• Pin Hole Camera Model: is an idealized camera model described as y = KD(1
eT
3 Tswpw)

Tswpw),

where pw is the observed object in the world frame, Tsw is a transformation from world frame to sensor
frame, D is a non-linear distortion function (usually the plum-bob model), andK is the intrinsic camera
matrix [13]. See [13] for more details.

• Occupancy grid mapping: A mapping technique using a 2D or 3D grid where each cell holds
the occupancy probability. Most formulations use a recursive update in log-odds (logits) space:

l(ck|y1:t, x1:t) = l(ck|y1:t−1, x1:t−1) +

{
+α if yt indicates the cell is occupied

−β otherwise
, where xt, yt are the

robot state and measurement at time t, ck represents the occupancy of the kth cell, and l(ck|y1:t, x1:t) =

log
(

p(ck|y1:t,x1:t)
1−p(ck|y1:t,x1:t)

)
is the log-odds [14].

• Extended Kalman Filter (EKF): is an optimal estimation algorithm used to estimate the state
of a system given measurements. Like the standard Kalman filter, the algorithm considers state and
measurement noise as Gaussian. However, the Extended Kalman Filter operates on non-linear systems
by linearizing them [15]. The EKF is the state estimator used by the PX4 [3].

• Visual-Inertial Odometry (VIO): is a technique that combines data from visual and inertial sensors
to estimate the motion of a robot in real-time. The T265 tracking camera uses VIO to estimate its
pose [16].

4 Challenge Task Solutions

This section describes our solutions to each of the challenge tasks. First, we summarize the structure of our
system. Then, for each task, we provide a brief list of objectives, a functional analysis, and our solution
details. Please refer to the official scoring documents and scripts here for a highly detailed description of
each task [17].

6

https://github.com/utiasSTARS/ROB498-flight

Ground Station

launch

land

abort

testSe
rv

ic
es

To
pi

cs

vicon

waypoints

Onboard

Global Planner Local Planner

Detector Mapper

Realsense/Vicon
Bridge mavros/odometry/out

 TF Tree

mavros/local_position/pose

odom

imx219/image

Waypoint Queue

Occupancy

setpoint position

Figure 6: A system overview diagram of Captor. Various utility nodes are not shown, like the IMX219
camera publisher. Reference frames are for illustration purposes only (see fig. 5 for more accurate frames).

4.1 Notation

This section describes the notation used during our description of the Captor system and challenge task
solutions.

We use Tab to denote a transformation matrix transforming from coordinates in frame b to frame a. We
denote “desired” poses with a tilde, e.g., T̃ab. p

ba
c denotes the translation from point a to point b, expressed

in frame c. We denote the yaw angle of a pose with the letter θ.
Fw, referred to as the world frame, is fixed in the center of the MY580 testing room and is the fixed

frame used by the Vicon system. Fd is the frame defined by the Vicon dots model placed on the Captor,
meaning the Vicon system measures Twd. Fb is the frame fixed to the origin of the PX4. Fc is the frame
fixed to the optical center of the IMX219 camera, with the z-axis pointing along the optical axis and the
x-axis pointing towards the bottom of Captor. Fm is the fixed map frame, which is taken as the initial
Fb when the system starts. Fr is the frame fixed to the Realsense T265 from which the VIO estimate is
provided. Refer to fig. 5 for an illustration of Fc,Fr,Fd,Fb.

4.2 System Overview

This section describes the Captor system at a high level. Further details are included in our description of
the solution to each challenge task. Refer to fig. 6 for a diagram of the main modules in Captor.

Captor consists of two main parts: the ground station and the onboard system. The ground station is
responsible for sending high-level semantic commands to the drone, such as launch, land,abort, and test

through ROS service calls. The ground station can also send information through ROS topics, including

desired waypoints {T̃(i)
wd}Ni=1 for testing, and ground truth pose information from the Vicon system (the

latest measured Twd).
The onboard system runs on the Jetson Nano using ROS and is responsible for enacting the commands

from the ground station. It has a transform tree (TF tree) which stores a buffer of static and dynamic
transformations in a tree structure. Sub-modules of the onboard system can query this TF tree for relevant
transformations at a specific time. We feed the following transformations to the TF tree:

• Tmb, the fused pose estimate from the PX4.

• Tbd, the fixed transformation between the PX4 and Vicon dots frame.

• Tbc, the fixed transformation between the PX4 and the IMX219 frame.

7

• Trb, the fixed transformation between the T265 odom frame and the PX4.

• and Twd, the pose estimate from the Vicon system.

We will describe the sub-modules of the onboard system during our description of the challenge task solutions
in the order they were developed and added to Captor.

4.3 Stationkeeping

CT2 was stationkeeping.

Task Description: The goal is to maintain a stable hover at a fixed altitude (height). After being sent
a launch command from the ground station, Captor is required to autonomously ascend to an altitude of
1.5m (The z value of pdw

w , as measured by the Vicon system). After sending the test command, the drone
must maintain a stable hover for 30 s. Finally, the drone should autonomously land after sending the land

command. The requirement is to keep the heading within ±5◦ of the initial heading when test is called,
and altitude within 1.5m ± 0.1m, and the horizontal position within ±0.15m of the initial position at the
start of test.

Functional Analysis: CT2 breaks down into four main functions:

• Launch: The drone must be able to control itself to a pose 1.5m above the ground (usually 1.5m
above the current pose).

• Land: The drone must be able to safely land by controlling itself to a pose on the ground (usually
directly below the current pose).

• Hover: The drone must be capable of maintaining its current pose. We assess this capability by
measuring the maximum translational and yaw deviation from the desired pose during the hovering
period of 30 s (lower is better).

• State Estimate: To achieve the previous functions, the drone must accurately estimate its pose in
the world.

Solution: To meet these requirements, and with future CTs in mind, we implemented a Realsense/Vicon
bridge, a Global Planner, and a Local Planner in the onboard system, which we describe below:

Realsense / Vicon Bridge: This node implements the state estimate functionality by taking in a pose
estimate (from either the T265 or Vicon) and passing it to the PX4 for use in its EKF pose estimator.

When using Vicon, the bridge node requires Tdb to be present in the TF tree. The bridge subscribes to
the TransformStamped message from the Vicon system Twd, computes Twb = TwdTdb, and publishes that
transformation through the mavros/odometry/out topic as a Odometry message. Thus, the PX4 can fuse
the Vicon position estimate into its state estimate. We set the Odometry message velocity and covariance
values to zero because the Vicon does not provide velocity information, and we assumed the poses to be
perfect. Note that when using Vicon, Fm will coincide with Fw.

When using the T265, the bridge node requires Trb in the TF tree. The bridge subscribes to the
Odometry message from the T265, transforms it into Fb, and publishes the resulting Odometry message to
mavros/odometry/out to be fused into the PX4 state estimate.

Different parameter files are loaded into the PX4 when flying with Vicon or the T265 for pose information.
When flying with Vicon, we disable all other sources of pose information, such as the Terabee. When flying
with the Realsense, we use the Terabee for height information.

With this bridge node active, the PX4 can accurately estimate its pose, allowing for position hold mode
when manually flying Captor.

8

Global Planner: The Global Planner is responsible for implementing the various service calls by main-

taining a thread-safe first-in-first-out queue of waypoints in the map frame Q = {T̃(i)
md}Ni=1 to visit and the

current desired waypoint T̃md. When the current desired waypoint is not set, the Global Planner pops the
next waypoint off Q, if available. The Global Planner calls the Local Planner at 20 Hz with the current pose
of the dots frame in the map frame Tmd and the desired pose T̃md, and the Local Planner send a control
command to the PX4 to move towards that desired pose. The Global Planner is agnostic to the internals of
the Local Planner, allowing for flexibility in implementation. Before calling the Local Planner, the Global
Planner checks if it has reached the current waypoint by calling pose is close(Tmd, T̃mb), which returns
True if Tmd is within 0.04m of the desired position and if the yaw angle θ of the drone is within 5◦ of the
desired yaw. False is returned otherwise. If Captor is close to the current waypoint and Q is not empty,
the current waypoint is set to the next waypoint popped off of Q. If Q is empty, we maintain the current
waypoint.

For CT2, we implemented the launch and land services in the Global Planner. The launch service added
a single waypoint at x = 0, y = 0, z = 1.5m, θ = 0, while the land command added a single waypoint at
x = 0, y = 0, z = 0, θ = 0, both expressed in the map frame Fm.

Local Planner: The Local Planner takes in the current pose of the Vicon dots in the map frame Tmd

and the current desired waypoint T̃md and publishes a message to the PX4 to command the drone to move
towards that desired waypoint. For CT2, the Local Planner simply sends a pose command to the PX4 that
puts the base frame at the desired pose in the map frame T̃mb = ˜TmdTdb. We limited the horizontal and
vertical velocity to 0.6m/s in the PX4 flight controller for smoother control.

4.4 Waypoint Navigation

CT3 was waypoint navigation.

Task Description: The goal is the navigate along a sequence of seven waypoints specified in the Fw

frame. First, the ground station sends a launch command, where Captor is meant to ascend to an altitude
of approximately 1.5m. Then, the ground station sends a test command along with the seven desired

waypoints {T̃(i)
wd}7i=1. The drone is required to reach all of the waypoints in order within 60 s. A waypoint

with desired position p̃dw
w is “reached” if the Vicon system measures pdw

w to be within 0.35m of p̃dw
w at

any point during the test. After Captor travels along the waypoints, the ground station will send a land

command.

Functional Analysis: CT3 builds on the functions from CT2 and adds the following functions:

• World Frame Conversion: The drone must be able to read Vicon data from the ground station
to determine Twm (the transformation between the local map frame and the world frame). This
transformation is required because the given landmarks are expressed in the world frame Fw.

• Waypoint Intake: The drone must be able to intake a sequence of waypoints from the ground station
and use them to perform the test command.

• Waypoint Navigation: The drone must be able to fly to the desired poses, detecting when it has
reached a pose, continuing to the subsequent waypoint, and hovering when it has reached the final
waypoint. This must be performed within the required time limit (≤ 60 s) and with the required
position accuracy (±0.35m).

Solution: To meet these requirements, we were able to reuse the majority of our implementation from
CT2. We only had to modify the global planner to add a test service, which set a flag test ready that

specified it was ready for testing, and a subscriber to the desired waypoints in the world frame {T̃(i)
wd}7i=1

from the ground station. In the waypoint subscriber, we first check if test ready is if the drone is flying.
If either of these conditions were not met, a warning is printed to the terminal. Otherwise, we transform

the waypoints to be expressed in the map frame T̃
(i)
md = TmwT̃

(i)
wd using the latest transform Tmw from the

9

(a) raw image (b) undistorted (c) yellow segment (d) rectangles

(e) final detection

Figure 7: The sequence of image transformations used in obstacle detection, from figs. 7a to 7e.

TF tree, and pushed onto the waypoint queue. Other than this addition, we kept everything the same from
CT2.

4.5 Online Obstacle Avoidance

CT4 was online obstacle avoidance.

Task Description: The goal of CT4 was to navigate to seven waypoints, similar to CT3, with four yellow
pole obstacles placed in the testing area. The drone must fly counterclockwise around the poles with green
lettering and clockwise around the poles with red lettering. The time limit for reaching all the waypoints is
75 s.

Functional Analysis: CT4 builds on the functions from CT2 and CT3, and adds the following functions:

1. Percieve: The drone must be able to detect the red and green obstacles.

2. Discern: The drone must be able to differentiate red from green obstacles.

3. Plan: The drone must be able to plan a path to each waypoint that avoids the obstacles in the correct
direction.

4. Acting: The drone must be able to follow its proposed plan without colliding with obstacles and
staying within the CT4 time constraint.

Solution: To meet these requirements, we added three new nodes to the onboard system: the IMX219
publisher to read and publish images from the IMX219 camera, the Detector to detect the obstacles, and
the Mapper to build an occupancy map from the detections. Furthermore, we modified the Local Planner

10

to use the occupancy map to avoid the obstacles, and we changed the Global Planner to perform a different
launch sequence to build the map before calling test. At a high level, our approach was to use the images
from the IMX219 camera, detect an oriented bounding box of poles in the image using the Detector, use the
known diameter of the obstacles to determine their 3D location, build an occupancy map based on those
detections using the Mapper, and then navigate around the poles using the occupancy map using the A*
algorithm on the occupancy grid. Below we describe the components of this system in detail.

IMX219 Publisher: The IMX219 publisher node reads data from the IMX219 color camera and publishes
it to a ROS topic. We used the open-source library JetCam [18] to interface with the IMX219 camera. We
used a checkerboard to calibrate our camera using the OpenCV functions findChessboardCorners and
calibrateCamera to find the camera’s intrinsic parameter matrix K and coefficients used in plum-bob
distortion model D.

The IMX219 publisher node reads images from the camera at 10 Hz and a resolution of 540 × 540 for
computational efficiency. Next, it undistorts them using OpenCV’s initUndistortRectifyMap and remap

— see figs. 7a and 7b for the result of this undistortion — and publishes that message to the imx219/image
topic.

Detector: The obstacle detector node takes images from imx219/image and detects the yellow cylindrical

obstacles shown in fig. 7. The output of this node is a set of points {po(k)c
c }Kk=1 in the camera frame Fc that

represent the center of the obstacles. Each point has an associated color green or red, depending on the
color of the letters on the obstacle. Figure 7e shows the detection of a red obstacle from log-replay data,
indicated by the color of the bounding box. For each incoming image, the Detector works by the following
steps:

1. Convert the image to the HSV color space.

2. Perform histogram equalization on the saturation channel, increasing the “spread” of saturation values.
Histogram equalization is useful so that most of the pixels from the obstacles, which are the most
saturated part of the image, will have a saturation ≥ 240 after histogram equalization, independent of
the lighting.

3. Threshold the HSV image to find the yellow poles, using a lower HSV value of (10, 240, 0) and an upper
HSV value of (80, 255, 255), which selects the most saturated yellow and green pixels at any brightness.
See fig. 7c for an example of the resulting masked pixels.

4. For each contour in the resulting mask, we

(a) Go to the next contour if the contour area is less than 1000 px2, excluding spurious detections
that are too small.

(b) Fit a minimum area rectangle to the contour. Figure 7d shows all the minimum area rectangles
from the image, including those with an area less than 1000 px2.

(c) If any rectangles aren’t oriented approximately vertically (≥ 10◦ degrees from 0◦ or 90◦), or the
aspect ratio w/h of the rectangle is ≤ 2, continue with the next contour and discard this one.
This requirement leverages the prior that the poles are approximately oriented horizontally and
are wider than they are tall, as seen from the IMX219 image.

(d) Go to the next contour if the minimum area rectangle has a corner too close to the top or bottom
of the image (we used a 64 pixel threshold on both sides). This requirement prevents us from
detecting a pole that is only half in our field of view, which would cause inaccuracies in subsequent
depth estimation.

(e) At this step, we count the bounding box as a detection. Figure 7e shows an example detection. To
determine if the obstacle has green or red lettering, we calculate the percentage of pixels within
the bounding box with a hue value in the range [40, 80] (green hues). If this is above a tuned
threshold value (we use 3%), we record the color as green. Otherwise, we record the color as red.

(f) The center of the detected bounding box is turned into a point poc
c in the sensor frame by back-

projecting the box using its known width of 0.3m.

(g) Each detected point and color are published to the topic detector/points.

11

(a) mapping

1

2

3

(b) planning

Figure 8: Schematics of the mapping and planning process. Figure 8a shows the logits update regions for
pole detection: the green dot is the detection point, the white dashed region updates towards less evidence
of occupancy and the dark grey circle updates towards more evidence of occupancy. Figure 8b demonstrates
the planning process using the occupancy map: the green and red circles denote the occupancy maps, the
black arrow is the start point and the blue arrow is the finish point. The darker the grey, the higher the cost
used in A* planning. The orange path indicates the path returned by A* on a grid, and the purple path is
the final smoothed path.

The back-projection procedure is as follows:

1. Calculate the depth d = hpfy/(h), where hp = 0.3m is the cylinder diameter, h is the height of the
oriented bounding box in pixels, and fy is the focal length expressed in vertical pixels fy = K2,2.

2. Calculate the 2D pixel coordinates of the center of the bounding box c = [uc, vc, 1]
T , and compute

poc
c = dK−1c.

Mapper: The mapper node takes detection points and their colors from detector/points and maintains
and outputs two occupancy grids, one for red and one for green obstacles. It stores two 2D arrays of logits,
logits green and logits red for the green and red obstacles, respectively. Both maps are square with a
side length of 9.8m (to match the width of MY580) and a resolution of 0.2m, with Fm located in the center
of each map. The node receives detection points with associated colors and updates the maps for each. We
describe the procedure for one point poc

c :

1. Use the TF tree to find the transformation Tmc, and transform the detection point into the map frame
pom
m = Tmcp

oc
c .

2. Next, use Tmc and pom
m to construct the occupancy update pattern shown in fig. 8a. Namely, in a

circle of radius 0.15m around the location of pom
m we add α = 1.0 to logits green if the detection is

green or to logits red if the detection is red. Further, for a 45◦ field of view (FOV) in the camera’s
direction, not including the occupied or occluded regions, we add β = −0.1 to both logit maps. We
cap the logit maps at a minimum of −4.0 and a maximum of 20.0 to prevent overconfident predictions.

3. Convert the logit maps to probabilities and publish these as ROS OccupancyGridmessages to the topics
mapper/red and mapper/green. We also threshold the occupancy maps at a probability value of 0.5
and print the disjunction (logical or) of the resulting binary masks to the terminal in ASCII format,
where “#” indicates an occupancy probability greater than 0.5 and “.” denotes otherwise. Figure 3d
shows this printed map, which helps the drone pilot assess the quality of the map in real-time and
abort the flight if Captor makes erroneous detections.

12

We tuned α and β based on log replay to ensure the occupancy updates were accurate and well-calibrated
(i.e., not overconfident or underconfident).

Local Planner: The Local Planner was modified to use the red and green occupancy maps in its planning
procedure. It stores a local copy of map red and map green by subscribing to mapper/red and mapper/green.
The Local Planner also stores its current local path local path, which we initialize to None. Given the
current pose of the drone Tmd and the desired pose T̃md, the Local Planner computes a position command
T̃mb to send to the drone according to the following steps:

1. Initialize a 2D cost map costs of ones, the same shape as map green, to be used by an A* planning
algorithm. Thus, the nominal cost to travel from cell to cell (without allowing for diagonals) is 1.

2. Turn the current occupancy maps from probabilities to binary masks mask green and mask red using
a threshold of 0.5. The positive regions of this mask are to inf in costs (indicating plans should never
enter these regions). Figure 8b shows these regions with red and green circles.

3. Dilate (enlarge) the positive regions of the masks using OpenCV dilate by 0.5m, and set these dilated
regions of the mask to a large cost (we use 100) in costs. These dilated buffer regions are labeled (1)
in fig. 8b. The buffers incentivize the A* planner to take wide paths around obstacles but do not make
it impossible to come close to an obstacle if required.

4. Use the OpenCV function dilate to directionally dilate the occupancy masks perpendicular to the
direction the drone is facing. For the green obstacles, we dilate to the left, and for the red obstacles,
we dilate to the right, according to the direction the drone faces. Figure 8b indicates these directional
buffer regions with the label (2). The dilated regions of the mask have their cost increased in costs

(we add 50). These directional buffers incentivize the A* planner to turn counterclockwise around the
green obstacles and clockwise around the red obstacles.

5. Set the cost of regions within 0.5 meters of the walls to a large value (we use 100) to incentivize the
A* planner to stay away from the edges of the map where there are walls.

6. If the current local path is None, the current local path is empty (i.e., the drone has reached all
of the poses along the current local path), Tmd is sufficiently close to the last pose on local path

(checked with pose is close), or the current local path results in a collision (by checking if any point
along local path is in a cell in cost with infinite cost), then we compute and save a new local path

according to the following procedure:

(a) Convert Tmd and T̃md into grid indices, and pass these indices along with costs into an A*
planner that operates on a grid. We use the blazingly fast pyastar2d [11], which returns a list of
2D points (tuples) representing the path it has found, or None if no path exists:

i. If no path exists, the Local Planner returns the previously sent T̃mb, forcing the drone to
maintain its current position. By staying still, the Detector and Mapper should have more
time to update the occupancy map, such that the Local Planner can find a path.

ii. If pyastar2d finds a path, we smooth the path. Figure 8b illustrates the original path in
orange and the smoothed path in magenta. The smoothing algorithm is: (i) Start at the first
waypoint i = 0, and consider the subsequent point j = 1. (ii) If the line between the point
at index i and j is collision-free, then increment j = j +1. Otherwise, append point at index
i to the smoothed path, set i = j, j = i + 1. Repeat from step (ii) until j reaches the end
of the path, then append the point at j to the smoothed path. We check for collisions on
the line connecting points at indices i and j by querying costs at all cells along that line
and checking if any costs greater than one are found (i.e., we don’t shorten the path to pass
through high-cost regions). This smoothing procedure prevents the drone from traveling on
a “staircase” along the grid cells found by A* (the orange path in fig. 8b.

(b) We convert the resulting list of grid indices to a list of poses in the map frame, where the altitude
z linearly interpolates between the z value of Tmd and T̃md and the yaw angle of Captor is set
such that the IMX219 camera points in the direction the drone is flying so it can see oncoming
obstacles. Further, for smoother drone rotation, we add poses that interpolate any rotations at

13

a yaw resolution of 5◦. We set the final pose on the path to Tmd̃ to fix the discretization error
caused by planning on a grid.

7. Otherwise, if we don’t need to re-plan, we use the stored local path. If Tmd is sufficiently close to
the first pose on local path, then we remove the first pose in local path.

8. The first pose on local path — after transformation Tmb = TmdTdb — is sent as a position command
to the PX4.

Global Planner: We modified the Global Planner launch sequence for CT4 to build the occupancy maps
before calling test. On launch, the Global Planner controls the drone to hover at 1.5m and then yaw slowly
360◦, such that the IMX219 camera sees the entire surroundings. At this point, the pilot can proceed to
test if the ASCII occupancy map in the terminal includes all of the obstacles in the scene.

5 Results and Evaluation

5.1 Stationkeeping

For stationkeeping, Captor was able to meet the requirements by staying within the specified tolerances
(±5◦ for yaw, 1.5m± 0.1m for altitude, and ±0.15m for horizontal translation) for 30 s. Thus, our score for
CT2 was 100%.

A critical lesson from CT2 was that the most significant uncertainty in the pose estimate from the T265
is in the depth direction. The results in fig. 9 illustrate this: during this test, the y axis of the world frame
was aligned with the depth direction of the T265, and the y component of the drift ∆y is far larger than ∆x
or ∆z. To mitigate this error, it helped to place objects like chairs in front of the T265 so there were more
features at a smaller depth. This learning carried over to CT3.

Figure 9: Translational deviation during CT2 without Vicon. ∆x,∆y,∆z are the drift in the x, y, z values
of pdw

w from the beginning of test. During this test, the depth direction of the T265 was aligned with the
y axis of the world frame.

5.2 Waypoint Navigation

For waypoint navigation with Vicon, Captor was able to meet the requirements by hitting all of the
waypoints within 60 s as shown in fig. 10b, so our score for this portion of CT3 was 100%.

For waypoint navigation without Vicon, we noticed a significant drift in the pose estimate Tmb from the
T265. To combat this, we investigated a few potential causes and solutions:

• We noticed that from a birds-eye view during practice trials, the actual drone trajectory appeared
slightly rotated relative to the desired trajectory, as shown in fig. 10a. This rotation indicated a
miscalibration in the transformation Tdb between the Vicon dots frame and the base frame. We
attributed this to small rotations of the Vicon dots holder about their single screw anchor point. To
combat this, we requested a new Vicon dots holder with two anchor points to prevent unintended
rotation.

14

• Once the T265 and bridge were active, we would walk the drone around the room to build up a map
of keyframes in the T265 SLAM system before launching the drone. We also placed more features in
the MY580 testing arena, such as chairs. This reduced drift, so we used it when evaluating CT3.

• We found that flying the drone more slowly reduced the drift, so we completed CT3 with a maximum
horizontal velocity of 0.4m/s, which was the minimum speed that would also satisfy the time require-
ment. We hypothesize that this reduces IMU error and noise in the T265 and the PX4, improving
localization performance.

• We tried flying the drone to the corners of a cube with side length 0.3m at each waypoint to increase
the chance of hitting the waypoint. We found that this did not appreciably improve performance, and
it caused us to violate the time limits, so we did not use this solution when evaluating CT3.

• Based on the hypothesis from CT2 that the worst drift was along the depth direction for the T265,
we tried flying the drone such that the T265 faced perpendicular to the current flight direction. We
found that this did not improve localization performance and worsened it in some cases (e.g., if the
T265 were to face toward the netting in MY580). Thus, when evaluating CT3, we used a constant
orientation of the drone for the entire test.

After implementing these solutions, we were able to reach all the waypoints in under 60 s as shown in fig. 10b,
so our score for this portion of CT3 was 100%. However, this was not a consistent result, and drift was still
an issue we dealt with during CT4.

(a) Rotational Misalignment (b) Vicon (c) No Vicon

Figure 10: Figure 10a is a practice CT3 run where the rigid transformation of the Vicon dots relative to
the PX4 Tbd was miscalibrated due to a rotated Vicon mount. Figures 10b and 10c present our evaluation
results for CT3, both with and without Vicon in the world frame Fw. The spheres are centered on the
waypoints with a radius of 0.35m, which are colored green if the drone reaches them and red otherwise.

5.3 Online Obstacle Avoidance

CT4 followed our planned approach, with the most significant issues being bug fixes. Figure 11 shows our
results with and without Vicon positioning. Our biggest challenge with CT4 was a faulty power distribution
board, which caused erratic flight patterns. We thought there was an issue with our software and spent
much time looking in the wrong place. Only when our motors burnt out did we realize that it was not a
software issue. After replacing the power distribution board, ESCs, and motors, we completed CT4.

With Vicon, we were able to reach all waypoints (see fig. 11a) but flew for 84 s, exceeding the 70 s time
limit. This resulted in a score of 98%.

Without Vicon, again, the biggest issue was the drift in the estimate from the T265. Figure 11b shows
our best run, where we reached 6/7 waypoints in 98 s. This resulted in a score of 80%.

15

(a) Vicon (b) No Vicon

Figure 11: Results from CT4, both with and without Vicon in the world frame Fw. The cylinders are at the
ground truth obstacle locations, colored based on the color of the lettering on the real cylinders.

6 Lessons Learned

Below, we discuss the lessons we learned throughout our design process.

Avoid crashing: The cost of crashing the drone is very high; rebuilding takes a lot of time and energy
that we would otherwise spend refining the design. For this reason, our first lesson learned is that flight
safety should be a top priority.

Most of our crashes were from operator error during manual control (e.g., after taking control of the
drone to avoid hitting an obstacle). Investing the effort to learn how to fly the drone manually would have
saved us lots of time later in the development process.

To combat our lack of manual flight skill, midway through the project, we set all available manual control
modes on the controller to “position hold mode”. This prevented us from accidentally switching to “altitude
hold mode,” which is very hard to control manually. We think this change prevented many possible future
crashes.

Hardware is hard: The issues that were the most difficult to fix were due to faulty hardware or hardware
acting unexpectedly. In section 5.2, we discussed the undesirable rotation of the Vicon dots, and in section 5.3,
we discussed the faulty power distribution board that resulted in erratic flight patterns, but there were other
hardware-related issues.

An example is the T265 intermittently losing its pose estimate, likely due to high vibrations (as discussed
in this GitHub issue [19]), causing the drone to fly in a random direction suddenly. Again, we were trying
to find a problem with our code that would have caused this issue.

In the future, when working with hardware, we should start debugging by checking the “inputs” to the
system (e.g., the data from the hardware), both manually and with automatic assertions that ensure the
data is reasonable (and throw warnings if it is not).

Use your priors: Throughout this challenging design process, we learned that leveraging the “given”
information, or priors, is vital to speed up development. For example, developing a general monocular
object detection framework for CT4 would have been extremely difficult and lengthy. Instead, we used all
the prior information we had about the obstacles we were trying to detect — aspect ratio, hue, saturation,
diameter, and orientation — which greatly simplified the task.

Simulation is vital: Despite hardware-related issues, this project reaffirmed the importance of simulation.
The amount of testing and debugging we could get done in simulation and with log replay was crucial to

16

https://github.com/IntelRealSense/librealsense/issues/4176

our success. The reason most of our real-life issues were in hardware was because we worked out all of the
software-related with simulation and log replay.

Shareable software: Building well-documented software that is easy to install and share with others is
vital for cross-team development. The more barriers to entry into the software stack, the harder it is for
team members to take the initiative and contribute to development.

17

References

[1] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simu-
lator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), vol. 3, 2004, 2149–2154 vol.3. doi: 10.1109/IROS.2004.1389727.

[2] C. L. Dym, Engineering design: A project-based introduction. John Wiley & Sons, 2013.

[3] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open source robotics
framework for deeply embedded platforms,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 6235–6240. doi: 10.1109/ICRA.2015.7140074.

[4] L. Meier, Px4 drone autopilot, 2023. [Online]. Available: https://github.com/PX4/PX4-Autopilot.

[5] M. Juhasz, Intel realsense gazebo/ros, 2020. [Online]. Available: https://github.com/nilseuropa/
realsense%5C_ros%5C_gazebo.

[6] E. M. Benavides, Advanced engineering design: An integrated approach. Elsevier, 2011.

[7] Qengineering, Jetson-nano-ubuntu-20-image, Mar. 2023. [Online]. Available: https://github.com/
Qengineering/Jetson-Nano-Ubuntu-20-image.

[8] Stanford Artificial Intelligence Laboratory et al., Robotic operating system, version ROS Noetic Ninje-
mys, 2020. [Online]. Available: http://wiki.ros.org/noetic.

[9] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[10] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. doi: 10.1038/s41586-020-2649-2. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2.

[11] H. J. Weideman, Pyastar2d, 2022. [Online]. Available: https://github.com/hjweide/pyastar2d.

[12] V. Ermakov, Mavros, 2018. [Online]. Available: http://wiki.ros.org/mavros.

[13] T. D. Barfoot, State Estimation for Robotics, 2nd. USA: Cambridge University Press, 2022, isbn:
1107159393.

[14] S. Waslander, Me 597: Autonomous mobile robotics section 8 – mapping i, 2020. [Online]. Available:
http://wavelab.uwaterloo.ca/sharedata/ME597/ME597_Lecture_Slides/ME597-6-MappingI.

pdf.

[15] S. Waslander, Lecture 20: Extended & unscented kalman filters, Mar. 2023.

[16] D. Scaramuzza and Z. Zhang, Visual-inertial odometry of aerial robots, 2019. arXiv: 1906.03289
[cs.RO].

[17] J. Qian, Rob498-flight, 2023. [Online]. Available: https://github.com/utiasSTARS/ROB498-flight.

[18] A. Kulkarni, Jetcam, 2020. [Online]. Available: https://github.com/NVIDIA-AI-IOT/jetcam.

[19] Y. Rumyantsev, T265 is loosing position under vibrations, 2019. [Online]. Available: https://github.
com/IntelRealSense/librealsense/issues/4176.

18

https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/ICRA.2015.7140074
https://github.com/PX4/PX4-Autopilot
https://github.com/nilseuropa/realsense%5C_ros%5C_gazebo
https://github.com/nilseuropa/realsense%5C_ros%5C_gazebo
https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image
https://github.com/Qengineering/Jetson-Nano-Ubuntu-20-image
http://wiki.ros.org/noetic
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/hjweide/pyastar2d
http://wiki.ros.org/mavros
http://wavelab.uwaterloo.ca/sharedata/ME597/ME597_Lecture_Slides/ME597-6-MappingI.pdf
http://wavelab.uwaterloo.ca/sharedata/ME597/ME597_Lecture_Slides/ME597-6-MappingI.pdf
https://arxiv.org/abs/1906.03289
https://arxiv.org/abs/1906.03289
https://github.com/utiasSTARS/ROB498-flight
https://github.com/NVIDIA-AI-IOT/jetcam
https://github.com/IntelRealSense/librealsense/issues/4176
https://github.com/IntelRealSense/librealsense/issues/4176

	Introduction
	Design Philosophy
	Simulation-First
	Future-Proofing
	Simplicity

	Background And Related Work
	Hardware
	Software
	Theory

	Challenge Task Solutions
	Notation
	System Overview
	Stationkeeping
	Waypoint Navigation
	Online Obstacle Avoidance

	Results and Evaluation
	Stationkeeping
	Waypoint Navigation
	Online Obstacle Avoidance

	Lessons Learned

