
BARFT: Bundle-Adjusting Neural Radiance Fields with Temporal
Regularization

Ben Agro Quin Sykora Sourav Biswas Yiqian Qin

Abstract

Neural Radiance Fields (NeRFs) [13] and their various
derivative works have become the de facto solution for 3D
scene representation from RGB images. One limitation of
NeRf is the requirement of accurate camera poses to learn
the scene representation. Recently, Lin et al. proposed Bun-
dle Adjusting Neural Radiance Fields (BARF) [12] to learn
the scene representation and camera poses jointly; however,
they only require minimal viewpoint changes or good cam-
era pose initialization. To address these problems, we pro-
pose BARFT; a method for training a NeRF on a chrono-
logical sequence of images (such as a video) without any
known camera poses. We leverage the temporal information
between consecutive frames to regularize the learned poses,
allowing BARFT to learn accurate poses even with signifi-
cant viewpoint changes and without any initialization. Our
experiments show that BARFT outperforms the state-of-
the-art BARF at learning a NeRF without camera poses,
furthering the line of work towards learned visual localiza-
tion systems and providing a robust and flexible alternative
for training a NeRF on video data. 1

1. Introduction
Neural Radiance Fields (NeRFs) [13] have proven to be a

popular and powerful representation of 3D space. A neural
network mapping from a 3D position and viewpoint direc-
tion to color and opacity can represent a 3D scene and be
used to render novel viewpoints. The network is trained by
comparing rendered images at given camera poses to their
associated ground truth images, which encodes the scene in
the network weights. NeRFs allow for high-fidelity recon-
struction of the scene from multiple viewpoints.

NeRFs need accurate camera extrinsics (poses) for each
image, a requirement which limits their widespread appli-
cation [13]. The camera poses are either known for syn-
thetic datasets or estimated in a pre-processing step us-
ing structure-from-motion (SfM) or Simultaneous Localiza-
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Figure 1. Novel view synthesis using BARF and BARFT, and
learned camera poses (ground truth in grey). Leveraging Tempo-
ral information allows us to optimize the NeRF and camera poses
jointly without requiring initialization.

tion and Mapping (SLAM) methods [13] e.g., COLMAP
[20, 21]. These methods are noise-sensitive, can produce
sub-optimal solutions, and can be slow and cumbersome for
use online [12].

Various works tackle NeRFs unknown camera poses,
but either require initial pose estimates [12, 24], only work
on scenes with minimal pose changes (commonly using a
forward-facing camera with only planar translational move-
ments) [12,26], or they require depth camera measurements
[9].

These shortcomings motivate our approach, BARFT,
which leverages the temporal information inherent to RGB
video data to optimize a NeRF and the camera poses jointly,
with the ability to handle potentially complex camera move-
ments (e.g., rotations, orbits, depth changes). The idea is
simple and elegant: BARF [12] showed how to optimize the
NeRF and camera poses jointly, but this only works with
minimal viewpoint changes. However, considering a con-
tiguous set of video frames sufficiently close in time, they
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will have minimal viewpoint changes. Thus, we design an
architecture and training procedure that first learns the cam-
era poses and updates the NeRF from only a short contigu-
ous snippet of video that is close in time to build an initial
“map” of the 3D scene and estimates of the camera poses.
This initial NeRF can be used to localize subsequent cam-
era poses that are nearby in time, and the NeRF will, in turn,
be updated with the new RGB image observations. We can
chain this procedure to learn the NeRF and camera poses for
an entire RGB video. We perform extensive experiments on
real-world video data with complicated camera movements,
which shows that our method can jointly optimize the NeRF
and camera poses and vastly outperforms the state-of-the-
art BARF [12].

2. Related Work

Structure from Motion and SLAM Given a set of input
images, SfM [1,18,19,22,23,27] and SLAM [4,7,15,16,28]
systems aim to recover a 3D map and sensor poses simulta-
neously. SLAM systems are designed to run online, while
SfM focuses on reconstruction quality. Feature-based / In-
direct methods [4, 15] detect key-points and match them
across frames. Modern versions use pre-trained neural net-
works as feature detectors [5]. Dense/ Direct methods [2,6]
exploit photo-metric consistency of pixel intensities be-
tween adjacent images to estimate relative poses.

Our task falls under SfM, but in contrast to classical
methods, we aim to use a learning-based optimization ap-
proach, encoding the scene with neural networks to obtain
high-fidelity 3D reconstructions. BARFT is part of a recent
line of work on the exciting avenue of rethinking visual lo-
calization for SfM/SLAM systems using view synthesis as
a proxy objective.

NeRFs [13] proposed NeRF to synthesize novel views of
static scenes given posed RGB images. A multi-layer per-
ceptron (MLP) —— with inputs x, y, z, view direction and
outputs of RGB color and opacity — is used to represent
the scene. Images are rendered using this MLP by accumu-
lating color and opacity along pixel rays, and the network is
trained via a photometric loss between the given image and
the rendered image.

NeRFs with Unknown Camera Parameters One line of
work in NeRFs has been to relax the assumption of accurate
camera poses for each image. Simultaneously reconstruct-
ing the 3D scene and the camera poses is a classic chicken-
and-egg problem.

Inspired by image alignment, BARF [12] proposes
a novel schedule for coarse-to-fine positional encoding
throughout training. A key to the high-fidelity reconstruc-
tions of NeRF is its use of positional encoding, a determin-
istic mapping of input 3D coordinates to higher dimensions
with different sinusoidal frequency bases [13]. However,

the high-frequency bands of the positional encoding result
in incoherent gradients on the query positions (x, y, z) and
thus make it challenging to optimize for the camera poses.
Thus, BARF proposed to apply a smooth mask on the en-
coding (from low to high) throughout training and showed
that this allowed for the joint optimization of camera poses
and NeRF [12]. However, BARF only performs well when
the input images have minimal viewpoint changes (e.g.,
only forward-facing planar camera movement). If the view-
point changes are complex, BARF requires fairly accurate
pose initialization (e.g., from an SfM system). When these
conditions do not hold, BARF does not learn accurate cam-
era poses and instead “cheats” by learning to reproduce the
RGB training images without learning the underlying 3D
structure of the world (which we show in Sec. 4). Other re-
cent works like NeRF– [26] and BADNeRF [24] face simi-
lar limitations.

Gaussian Splatting Kerbl et al. recently proposed Gaus-
sian Splatting [10] as a promising alternative to NeRF for
novel view synthesis and 3D scene reconstruction. The
idea is to optimize the size, position, color, and opacity
of millions of Gaussians in the scene. The Gaussians can
be efficiently rendered by “splatting” them onto the image
plane. Gaussian Splatting allows for super-realtime render-
ing (400FPS) [9], faster training, and more accurate novel
view synthesis. The Gaussian positions can be randomly
initialized or leverage point-cloud locations from SfM or
a depth camera. This Gaussian representation provides an
explicit map with spatial extent, which can be used to deter-
mine which parts of the rendered images are inaccurate and
mask them out in the reconstruction loss [9]. SplaTAM [9]
leverages these advantages to use Gaussian Splatting as a
3D map representation for online SLAM. However, they as-
sume access to a depth camera to initialize the positions of
the Gaussians.

3. Method

We begin with the intuition behind our method. The
main idea is that BARF [12] cannot learn with images that
have very different viewpoints (e.g., little to no overlapping
features, large rotations, significant depth changes). How-
ever, in a video sequence, we know that nearby images in
time should be similar to one another (if using a sufficiently
high frame rate).

3.1. Overview

Our method uses an RGB video with N total frames or-
dered in time and known camera intrinsic parameters as in-
put. Optimization of the NeRF and camera poses occurs
over three stages, illustrated in Fig. 2, which we discuss be-
low.
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Figure 2. BARFT Training Procedure: The overall training procedure has three stages. In the Initialization stage, we use a short snippet
from the beginning of the video to train both the NERF model and camera poses. We gradually add consecutive frames to the training
data in the Iterative Optimization stage. Upon adding each new frame, we initialize the new camera pose to that of the previous frame,
and its learning rate follows exponential decay. The loss weighting for the new image is smoothly increased over 2k iterations using a
cosine scheduling function. In the Refinement stage, we train the entire model with all camera poses and video frames. Here, we gradually
unmask higher frequency bands of the positional encoding to allow for high-fidelity NeRF results.

Initialization For init num iters, we optimize the
NeRF using only the first init num images frames (e.g.,
using the first 1s of frames from a video for 10k iterations).
We call camera poses that are being optimized and their as-
sociated RGB frames “active set”. Here, only the lowest
frequency band of the positional encoding is unmasked to
make learning camera poses easier, as in BARF [12]. Be-
cause those images are close in time, we can learn both the
NeRF and camera poses for the scene area observed in the
initialization images [12].

Iterative Optimization After the Initialization period, we
introduce new images into the active set chronologically.
Concretely, we add the next video frame with camera pose
initialized to that of the previous frame and optimize the
NeRF and this new active set for per image num iters
(e.g., 2000 iterations). The idea here is that this new image
is close in time to the pre-existing active set and thus will
have a significant viewpoint overlap with the existing NeRF,
and its camera pose should be close to the previous camera
pose in the video sequence. This significant overlap makes
it easy to localize the new camera pose with respect to the
existing NeRF and update the NeRF to account for the new
video frame observation. We make three additional changes
from BARF to facilitate this optimization procedure.

BARF uses an exponential learning rate decay for the
poses throughout training, allowing for large updates ini-
tially when the poses have significant errors and smooth
convergence to a minimum later in training. Instead, we
use an independent learning rate schedule for each pose be-
cause we introduce camera poses to the active set at dif-
ferent times during training. We choose an exponentially
decaying learning rate that starts when the corresponding
image is added to the active set (see Fig. 2). This learning
rate schedule allows for large camera pose updates when the
images are first introduced to the active set and only minor
refinements later.

Secondly, introducing a new image initialized with the
“wrong” pose can make it difficult to optimize the NeRF, as
the new observation may disagree largely with the existing
NeRF. To smooth the introduction of new images, we grad-
ually increase their contribution to the overall loss using a
cosine schedule increasing from a loss weighting of 0 to a
loss weighting of 1 over duration increase (we set
this to be equal to per image num iters) (see Fig. 2).

Refinement Finally, we include a Refinement period at the
end of training that is finalize num iters (e.g., 200k)
iterations in duration beginning after the active set includes
all RGB frames. During this period, we unmask the NeRF
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positional encoding as described by BARF [12]. This late
unmasking allows the optimization to prioritize learning ac-
curate poses while the active set grows and then transition to
learning a high-fidelity NeRF during the refinement stage.
We note that we restart the NeRF (exponential) learning
rate schedule during the refinement phase to accommodate
changes in positional encoding, which may require signifi-
cant parameter updates.

3.2. Implementation Details

For BARFT, we train:

• Initialization for 10k iterations.

• Iterative Optimization for 2k steps per image. During
this stage, for each new video frame, we exponentially
decay from 3× 10−4 pose learning rate exponentially
decaying to 1× 10−6.

• Refinement for 200k iterations. During this period, we
linearly unmask the positional encoding from 10% =
20000 iterations to 50% = 100000 iterations in the
refinement stage, as in BARF [12].

The learning rate for the NeRF is exponentially decaying
from 5× 10−4 to 1× 10−4 over Initialization and Iterative
Optimization, and then re-started again from 5 × 10−4 to
1× 10−4 over the Refinement stage.

We follow implementation details used in [12] for BARF
and NeRF; we train them for 200k iterations with the NeRF
learning rate exponentially decaying from 5 × 10−4 to
1 × 10−4. In the case of BARF, the learning rate for
the camera pose exponentially decays from 1 × 10−3 to
1 × 10−5 throughout training, and the positional encoding
is unmasked during the period of 10% of training to 50% of
training.

We train all methods on 1 GPU with 2048 random rays
sampled per image.

4. Experiments
We test the performance of our method on three real-

world videos captured with a handheld cellphone (see
Sec. 4.1). More specifically, we evaluate our method on
each video in two aspects: (i) accuracy for camera pose
registration and (ii) view synthesis quality for the 3D scene
representation.

4.1. Datasets

We conduct our experiments on three videos: WORK-
OUTAREA, PLANT, DESK. See Figs. 3 to 6 for an idea of
the content of these videos. Each video is 30 frames per sec-
ond, roughly one minute long, and has a 1080 by 1920 pixel
resolution. The videos were collected manually using an
iPhone 13 Pro video camera, and we estimated ground truth

poses using COLMAP [20]. Semantically, each video cap-
tures different aspects of evaluation. The WORKOUTAREA
dataset has significant translations during video capture and
no overlap between the final and initial images. The PLANT
dataset has a partial orbital rotation around a subject of in-
terest, featuring camera rotations and novel viewpoints that
BARF [12] cannot handle. DESK features significant depth
changes throughout the video. We use video frames at
times {0 s, 0.5 s, 1 s, . . . } for the training images, and video
frames at {0.25 s, 0.75 s, 1.25 s, . . . } for the evaluation im-
ages, ensuring the two sets are non-overlapping but from a
similar distribution.

4.2. Metrics and Evaluation

We measure performance along two axes: camera regis-
tration accuracy and view synthesis quality.
Camera Registration Following BARF [12], since the
learned camera poses are variable up to a 3D similar-
ity transform, we evaluate the registration quality by pre-
aligning the optimized poses to the ground truth with Pro-
crustes analysis on the camera locations. We use aver-
age translation errors (in meters) and rotation errors (in
degrees). See appendix B of BARF [12] for more de-
tails on how to compute average rotation error. Note
that the “ground truth” camera poses are provided by
COLMAP [20] and are thus not perfectly accurate. Nev-
ertheless, it provides some idea of the relative performance
of BARF and BARFT.
View Synthesis Quality To evaluate the quality of novel
view synthesis, we transform the test views to the coordi-
nate system of the optimized poses by applying the 3D sim-
ilarity transform. We follow BARF [12] in factoring out
the pose error in evaluating view synthesis quality by run-
ning an additional step of test-time photometric optimiza-
tion. Concretely, we learn a pose offset from the evaluation
pose and render the novel view RGB image at this offset
pose. The metrics used for evaluating view synthesis qual-
ity are:

• Peak signal-to-noise ratio (PSNR): Measures the
mean-squared error per pixel between original and re-
constructed images [8]. Higher PSNR implies less dif-
ference between the original and reconstructed image.

• Similarity Index Method (SSIM): Evaluates local
structural similarity between images [25]. Higher
SSIM values indicate higher similarity between orig-
inal and reconstructed images.

• Learned Perceptual Image Patch Similarity
(LPIPS): Evaluates deep features across different
architectures and reflects the perceptual similarity
between images [29]. Lower values correspond to
higher perceptual similarity.
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Camera Pose Registration View Synthesis Quality

Scene Rotation Error (°) ↓ Translation Error (m) ↓ PSNR ↑ SSIM ↑ LPIPS ↓

BARF BARFT BARF BARFT BARF BARFT NeRF BARF BARFT NeRF BARF BARFT NeRF

WORKOUTAREA 174.2 6.55 5.66 0.47 7.35 21.66 26.42 0.40 0.78 0.83 0.948 0.390 0.350
PLANT 178.1 7.52 6.09 0.50 10.49 21.70 26.78 0.58 0.80 0.83 0.884 0.360 0.364
DESK 24.6 3.71 1.38 0.23 9.51 23.02 25.34 0.53 0.77 0.79 0.820 0.410 0.420

Table 1. Camera pose registration accuracy and novel view synthesis evaluations of our model compared to baseline BARF. We include
NeRF for reference, but a direct comparison to BARFT or BARF should not be made because NeRF has access to ground truth camera
poses during training.

4.3. Quantitative Results

Comparison Against Baselines We present our quanti-
tative results in Table 1, which compares BARF, BARFT
(ours), and NeRF on the three datasets. Note that we present
NeRF as a reference point for the “best” view synthesis
metrics that could be achieved and should not be compared
against directly because it has access to the “ground truth”
poses.

Overall, our method dramatically outperforms BARF
across all datasets and metrics and approaches the view syn-
thesis quality of NeRF. We note that when presented with
camera poses with significant viewpoint changes, BARF
does not learn meaningful 3D structure or camera poses
and instead overfits to the training images. This overfit-
ting is evident in Fig. 4 and Fig. 5, where the novel view
depth and RGB images and the learned poses are nonsen-
sical. BARFT is robust to challenging video data, includ-
ing orbital rotations, extensive translations, and significant
depth changes.

Ablations We conduct ablation studies to analyze the im-
pact of the per-image camera pose learning rate and final
Refinement stage proposed in the Sec. 3. We use the PLANT
dataset The results of our ablation experiments are shown
in Tab. 2.

For ablating the proposed per-image camera pose learn-
ing rate schedule, we instead use the shared exponentially
decaying camera pose learning rate used by BARF [12].
The proposed schedule is crucial for performance. With-
out it, the camera poses introduced later in training cannot
be updated by the large amounts required to align with the
learned NeRF. As seen with BARF, these inaccurate camera
poses result in the training collapsing and the model over-
fitting without learning 3D structure.

For ablating the Refinement stage, we instead follow
BARF in un-masking the positional encoding linearly dur-
ing the period of 10% to 50% of total training iterations (in-
stead of 10% to 50% of Refinement stage iterations). This
earlier introduction of the high-frequency bands of the posi-
tional encoding causes issues in learning the camera poses,
as illustrated by the worse pose registration results in Tab. 2,
which in turn affects the view synthesis quality.

To ablate the proposed pose loss weighting schedule, we
instead give every image an equal loss weighting. As shown
in Tab. 2, our proposed loss schedule brings slight perfor-
mance improvements on the PLANT dataset. In datasets
with more considerable viewpoint changes between adja-
cent frames, we would expect this improvement to be even
more prominent; newly introduced images would have con-
siderable disagreements with the existing NeRF as their ini-
tial camera pose is inaccurate, which could cause inaccu-
racies to be learned in the NeRF if that image is weighted
equally in the image reconstruction loss.

4.4. Qualitative Results

We provide some qualitative comparisons of BARFT to
BARF and the oracle NeRF in Fig. 3. In all datasets, we
observe BARF’s tendency to overfit the training images and
not learn the 3D structure of the world or accurate cam-
era poses. This overfitting is reflected in the nonsensical
RGB output of BARF when evaluated at the novel evalu-
ation view and inaccurate depth map. On the other hand,
BARFT learns an accurate depth map (comparable to that
of NeRF) and high-quality RGB novel views.

Figs. 4 to 6 illustrate the poses learned by BARF and
BARFT compared to the “ground truth” poses provided by
COLMAP [20]. We see that throughout training BARFT
learns the camera poses as the active set grows, while BARF
learns nonsensical camera poses.

5. Future Directions

Our method is less accurate for camera pose registration
than sophisticated SLAM and SfM methods. Future work
should investigate how to bridge this gap. We see two po-
tential areas to investigate.

Explicit Map: The learned NeRF is a learned map in
some sense, but it does not have an explicit spatial fron-
tier. Thus, we do not consider if a newly introduced im-
age is looking at a region that has already been mapped or
at a newly observed region in space, which results in am-
biguity as to whether or not the map/NeRF should be up-
dated or the camera pose. If the spatial frontier of the map
was known, then when adding an image to the active set,
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Camera Pose Registration View Synthesis Quality

Pose LR Refinement Loss Schedule Rotation Error (°) ↓ Translation Error (m) ↓ PSNR ↑ SSIM ↑ LPIPS ↓

✗ ✓ ✓ 159.37 7.18 7.41 0.39 0.94
✓ ✗ ✓ 16.04 0.91 15.35 0.70 0.57
✓ ✓ ✗ 8.62 0.55 18.39 0.75 0.46
✓ ✓ ✓ 7.52 0.50 21.70 0.80 0.36

Table 2. Training subsection ablation: we ablate our proposed pose learning rate schedule, refinement stage, and loss weight schedule
described in Sec. 3 on the PLANT dataset. All components are important for final performance in both camera pose registration and view
synthesis quality.

Figure 3. Novel view synthesis qualitative comparison. BARFT can produce reconstructions of the scene comparable to NERF trained
with pre-computed camera positions. On the other hand, BARF struggles to learn the camera poses and NeRF jointly and fails to create a
realistic 3D reconstruction.

we could use mapped regions to optimize the camera pose
while filling in unmapped areas with the latest observation.
As in SplaTAM [9] and discussed in Sec. 2, Gaussian splat-
ting presents a promising alternative to NeRFs that has ex-
plicit spatial extent and could be used for learned SLAM.

Efficiency and Realtime Operation: Implemented en-
tirely in Python, optimizing the NeRF and camera poses is
far too slow to run online (approximately 8 hours of train-

ing time on an A6000 GPU). However, InstantNGP [14]
showed they could speed up NeRF training by orders of
magnitude. A similar approach could be applied to our
method, which, along with other optimizations, could allow
for realtime camera pose registration from a video stream.

Improved Motion Model: In our method, we naively
initialize the newly added camera pose to the previous cam-
era pose in the sequence. Future work could investigate
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Figure 4. Camera Pose Registration for the PLANT dataset. The grey poses are the “ground truth”, while the colored poses are learned.
Despite the length of the camera trajectory, BARFT can learn a trajectory that very closely follows the true path.

Figure 5. Camera Pose Registration for the DESK dataset. The grey poses are the “ground truth”, while the colored poses are learned.
BARFT accumulates significantly less error than BARF.

better initializations using a motion model (e.g., constant
velocity), which could speed up optimization and improve
performance by converging to a better minimum.

Loop closure: Mature SLAM systems often include a
loop-closure mechanism, which allows for drastic map and
pose updates when the same part of the map is observed
again after some time (e.g., after the camera performs a
loop) [3,11,17]. This mechanism is not present in BARFT,
and as the NeRF trains, the map (and camera poses) be-
comes harder to drastically adjust if there is a new impor-
tant observation, like after a loop closure (both because we

reach a local minimum and the exponential learning rate
decay). We observe this limitation in our results as we see
the most significant pose errors later in the video sequence
as the poses and map slowly drift and accumulate errors
(see Fig. 5). Incorporating mechanisms like loop closure in
SLAM to allow for significant adjustments could improve
the performance of our system.
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Figure 6. Camera Pose Registration for the WORKOUTAREA dataset. Unlike Fig. 5 and Fig. 4, we show a forward-facing view of the
camera poses in this figure. We notice that BARFT tracks the ground truth accurately while BARF does not converge.

6. Conclusion
In summary we presented BARFT, which exploits tem-

poral information between consecutive frames in videos to
enable joint optimization of camera poses and NeRF with-
out any camera pose initialization and with large camera
viewpoint changes. We show experimental results of our
method outperforming previous state of the art across sev-
eral datasets exhibiting challenging camera movements. Fi-
nally we note the limitations of our work along with a dis-
cussion on next steps and future directions.
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