Geometry Boy Project Report

Ben Agro: 1005857020 Jerry Chen: 1006269654 Shardul Ghuge: 1005964495

April 12, 2022

Link to video demo: https://youtu.be/I1WBaEiE1EUo.
Link to open-source repository: https://github.com/BenAgro314/MIE438 Project.

https://youtu.be/1WBaEiE1EUo
https://github.com/BenAgro314/MIE438_Project

Introduction

The purpose of this project was to develop a version of the popular mobile game Geometry
Dash called Geometry Boy that can run on the original Game Boy Dot Matriz Game (DMG).
Geometry Dash is a horizontal auto-scrolling platform game available on i10S and Android [1]. The
player taps the screen to control one of several vehicles while avoiding obstacles in an attempt to
reach the end of the level.

This document summarizes the original proposal, our final design, an overview of relevant Game
Boy hardware, software tools used during development, implementation details, and next steps for
Geometry Boy.

Project Proposal Summary

We planned that Geometry Boy would start as a minimum viable version of Geometry Dash:
the player controls a vehicle at a fixed horizontal position on the screen. Obstacles and objects the
player can interact with scroll into frame from right to left. This basic version has only one vehicle,
a square sprite, which the user controls with one input - the Up button on the Game Boy joypad
(see figure 1b) - which makes the player jump a fixed height if the square is touching the ground.
The game has four main objects: (1) Blocks that are safe to stand on, (2) Spikes that will end the
current attempt, (3) Jump Tiles that automatically cause a large jump, and (4) Jump Circles
that allow the player to jump in mid-air if the jump button is pressed (see figure 1a).

(a) Annotated screenshot from Geometry (b) Game Boy console
Dash. The pictured player is mid-jump, with circled jump control
triggered by a jump tile. input.

The main shortcoming with the original proposal was that it only focused on gameplay and not
on supporting structures (player selection, level selection, saving progress, etc.,). In retrospect, it
was not ambitious enough because we under-estimated the Game Boy’s capabilities (e.g., available
code memory via Memory Bank Controllers), and was missing some key features we included in
our final design (music, different vehicles, more obstacle types).

Final Design and High Level Program Structure

Our program was written in C and compiled for the Game Boy with the Game Boy Development
Kit (GBDK). The high-level structure of the Geometry Boy program can be summarized by a state
machine depicted in figure 2. The high-level state is encoded by three variables:

e current_screen € {TITLE, GAME, LEVEL_SELECT, PLAYER SELECT}: Dictates which “main” func-
tion is running. These functions include title(), game(), level_select (), and player_select (),
each of which return the next current_screen value on user input (causing a state transition).

ilevel_ind = 0 level_ind = 1 level_ind = 2

LEVEL O1 LEVEL 02 LEVEL 03
PROGRESS PROGRESS PROGRESS
H 048% @ [=]=1- 3 = 014%
() H ATTEMPTS ATTEMPTS ATTEMPTS
player_select title() : I TENE TENE
H > » START » START
y O =] C =] “wa" = BACK BACK

Select Select

- " I O O R o o s S T T T TIIreT TOTIreL
Back|or Win Back jor Win Back|or Win

= = 8 ® ; SRR ;
b "] E ' :
I %] 5
b | (L] :

ilevel_ind = 0 level_ind = 1 level_ind = 2
O game() ...

Figure 2: Block diagram of the high level state machine of Geometry Boy. Arrows denote state
transition based on the listed user input.

e level_ ind € {0,1,...,NUM_LEVELS — 1}: indicates the level (map and song) that will be played
in the game () function and which level meta-data is displayed in the level_select () function.
This state is only modified in the level_select () state/function when the player presses Left
or Right on the joypad.

e player spritenum € {0,1,... NUMPLAYER SPRITES — 1}: dictates which player sprite (8 x 8
pixel image representing the player) will be rendered in the game () function.

The title screen consists of a while(1) loop that implements an “infinitely” scrolling back-
ground with parallax (implementation described below) and a title with periodically “bouncing”
letters. On this screen, the user can input Up or Down to move the cursor (green triangle) to point
to the START or PLAYER letters, respectively. Pressing Select when the cursor is pointing to the
PLAYER letters will cause a transition to player_select (), while it will cause a transition to the
level select() screen when pointing to the START letters.

The player select screen consists of a list of player sprites and a cursor that points to the
current selection. Inputting Up, Down, Left, or Right will move the cursor to another sprite,
with wrap-around on the rows and columns. The sprite that the cursor points to bounces up and
down. Pressing Select will set the player_sprite num variable such that the selected sprite is
used in-game. It also causes a transition back to the title screen.

The level select screen consists of text indicating the selected level number, the saved progress
(as a percentage of level completion) and the saved number of attempts (saving data is described
below). The cursor points to either START or BACK, and is moved with the Up and Down joypad
inputs. Pressing Select when the cursor points to START will begin the actual gameplay. If the
cursor points to BACK, the screen transitions back to the title screen. Pressing Right or Left will
increase or decrease the level_ind (respectively) and update the screen.

The game screen is where the actual gameplay takes place. The level map and player sprite
are loaded according to level_ind and player_sprite_num, respectively. The game controls and
features are described below. For implementation details see Implementing Geometry Boy.

Gameplay

The finished game is as described in project propsal with all four types of obstacles, with the
addition of “vehicle” transitions. A variety of spike and block obstacles were added (different

orientations and sizes) but their function stays the same.

An additional space ship vehicle is added. Partway through certain levels, the player will pass
through a “portal” and transition from a block to a spacecraft or vice versa. To control the spaceship
vehicle, hold the Up button to move the spaceship up. Releasing the Up button lets the spaceship
fall at a constant speed (see the image under game (), level_ind = 1 in figure 2).

The game play is enhanced by additional features, including parallax and music (unique to each
level).

Game Boy Hardware

This section details the Game Boy hardware relevant to the

project; features we used and limitations imposed by the hardware. OxFFFF | Higher Memory

This information will be relevant in the subsequent description of ~ 0xE000 (see [2])

the software implementation of Geometry Boy. OxDFFF | 8kB of Work
0xC000 RAM

Memory Map

OxBFFF | 8kB of External
Figure 3 provides a diagram of Game Boy memory (simplified 0xA000 |SRAM (cartridge)

to only include low memory portions relevant to our discussion) 0x9FFF
[2]. The code read-only memory (ROM) stored in the cartridge is ~ 0x8000
mapped to the lowest 32 kB in memory [2]. While the bottom 16 kB Ox7FFF
of this ROM is fixed (memory bank 0), the top 16 kB bank can be 16kB ROM bank
swapped for another 16 kB memory bank in the cartridge to allow 1= N (cartridge)
for ROMs larger than 32kB [2]. Switching ROM banks is achieved 0x4000
by a Memory Bank Controller (MBC) chip that is located in the Ox3FFF
game cartridge itself [2]. Bank 0 also stores the cartridge header,

which declares information like the entry point to the program and 00000
the cartridge type [2].

8kB of VRAM

16 kB ROM bank
0 (cartridge)

Figure 3: A portion of the
memory map of the Game
Boy [2].

Cartridge Type

The cartridge type specifies which MBC is used (if any) and if
other external hardware exists in the cartridge [2]. For Geometry
Boy, we used a type 0x1B cartridge. This type specifies that our cartridge uses memory bank
controller chip MBC5, and that the cartridge has battery-backed SRAM (which is mapped to 0xA000
- O0xBFFF, see figure 3) [2]. MBC5 can control a total of 8 MB of ROM and 128 kB of external SRAM.
This extra ROM is necessary to store long level maps. The battery-backed SRAM allows for the
storage of game data (level progress, number of attempts) while the Game Boy is turned off. MBC5
comes with memory-mapped registers for enabling RAM prior to reading or writing, and selecting
the current ROM bank number mapped to 0x4000 - O0x7FFF (whose functionality is abstracted
into macros by GBDK) [2] [3]. Other MBCs have similar memory capabilities (e.g., MBC1), but we
choose MBC5 because it is the newest cartridge type and thus the easiest to source if we wanted to
run Geometry Boy on a real Game Boy [4].

Rendering

The VRAM in figure 3 is shared between the CPU and the Picture Processing Unit (PPU),
but cannot be accessed by both at the same time [2]. The CPU does the graphics calculations
to update VRAM, while the PPU renders the image to the 160 x 144 pixel (width, height) LCD
screen [2]. Each pixel can display four shades of grey [2]. The LCD screen is drawn row-by-row in
pixel rows called scan-lines [2].

To reduce computational load, the Game Boy’s pixels are not manipulated individually [2].
Instead, pixels are grouped into 8 by 8 squares called tiles [2]. A tile assigns a color ID to each

of its pixels, ranging from 0 to 3 [2], so each tile takes (2)(8)(8) bits, or 16 bytes of memory. Tile
data is stored in VRAM at 0x8000 - 0x97FF, enough space for 384 tiles [2].

The PPU draws three layers of tiles to the screen: background, window, and objects (from back
to front) [2]. The background layer is composed of a 32 x 32 tile (256 x 256 pixel) map called
a tile map, only a portion of which is displayed to the 160 x 144 pixel screen [2]. The tile map
does not explicitly store tile data, but just an index of the tile in VRAM [2]. There is space for
two tile maps in VRAM, located in memory ranges 0x9800 - O0x9BFF and 0x9C00 - Ox9FFF [2].
Scrolling is achieved by writing to the SCX and SCY registers of the LCD, which specify the top left
coordinates of the visible 160 x 144 pixel area in the 2566 x 256 tile map [2]. These registers are
memory mapped to 0xFF43 and 0xFF42, respectively [2].

The window layer is a non-scrollable background-like layer (using tile map data), without
any transparency (see the STAT interrupt for details on how this is used) [2]. The object layer
contains tiles that can move independently around the screen, commonly called sprites [2]. Instead
of four shades of grey, sprites have one transparent color, and three shades of grey [2]. Their tile
data is located in VRAM at 0x8000 - 0x8FFF, and their attributes (x position, y position, and
tile index) are located in Object Attribute Memory (OAM) located at 0xFO00 - OxFESF [2]. One
main limitation of the Game Boy hardware is that the PPU can only display up to 40 sprites with
a mazimum of 10 per scan-line, so they were used sparingly in Geometry Boy [2].

Various bits of the LCD control register (LCDC) (memory mapped to 0xFF40) determine
if the window layer, background layer, and object layers are drawn on the LCD [2].

Interrupts

Here we describe the interrupts used in Geometry Boy. Details on how they are used can be
found below.

When all of the LCD scan-lines are drawn (which occurs at ~ 60 Hz) a vertical blank inter-
rupt (VBlank) is generated [2]. After this, the CPU can update the VRAM with the next frame
of the game (e.g., updated sprite position, background scrolling) [2].

The LCD Y Coordinate (LY) register (memory mapped to 0xFF44) holds the current scan-
line [2]. The LY Compare (LYC) register (memory mapped to 0xFF45) is constantly compared
with the LY register [2]. If they are equal, then the LY = LYC flag (bit 2) of the LCD Status
Register (STAT) is set [2]. Various LCD related interrupts can be enabled by setting bits in the
STAT register [2]. Setting bit 6 enables the LCY=LY STAT interrupt, which is generated when
LCY = LY [2].

Joypad

The Game Boy joypad has four action buttons (Down, Up, Left, Right) and four select
buttons (Start, Select, B, A), as pictured in figure 1b. The JOYP register (memory mapped
to 0xFF00) has two bits for choosing if the action buttons or direction buttons are read, and then
four bits indicating if any of the four selected buttons are pressed.

Sound Controller
Audio from the Game Boy is controlled by the Audio Processing Unit (APU), which can produce
sound in four channels, each with a different waveform:
e Tone and Sweep (CH1): Distinct beep sounds for melodies, implemented with quadrangular wave
patterns with sweep (changing frequency) and envelope (changing amplitude) functions [2] [5].
e Tone (CH2): Same as CH1 but without the frequency sweep functionality [2].

e Wave Output (CH3): A four bit digital to analog converter (DAC) that plays custom wave forms
specified by 32 four bit samples [5].

Noise (CH4): A set of white noise wave-forms that sound like static (percussion and ambient
sounds) [2].

Each channel has four to five memory mapped control registers, and CH3 has RAM for storing

the 4 bit samples [2]. There are “global” sound registers for volume and turning sound on/off
[2]. Each channel circuit produces and digital value in the range 0x0 - 0xF, which is then passed
through a DAC (one for each channel) to create an analog value [2]. These analog values are mixed,
scaled, and sent to the output (amplifier, filter, and speaker) [2].

Toolchain
GBDK

The Game Boy Development Kit (GBDK) provides a C compiler and linker based on the Small

Device C Compiler (SDCC) to generate .gb ROM files from C code. The Geometry Boy project
uses the GBDK front-end compiler 1cc in a Makefile to generate object files like:

lcc -Wf-bo# -c -o object.o source.c

where # is replaced with a number indicating the ROM bank where the code data will reside. In
the link stage (where the .o files are combined into a .gb ROM file), we can specify a type 0x1B
cartridge by passing the flag -Wl-yt0x1B and the number of required ROM/RAM banks with
-Wl-yo#/-Wl-ya#, where # is a power of 2. Geometry Boy uses 5 total ROM banks and 1 RAM
bank, so we pass -Wl-yo8 and -Wl-yal, respectively.

Apart from compiling higher-level C code into assembly for the Game Boy, GBDK also provides

various libraries to abstract the details Game Boy hardware from the programmer. Geometry Boy
used various GBDK marcros and functions:

SHOW_BKG, HIDE_WIN, SHOW_WIN, HIDE_SPRITES, and SHOW_SPRITES set/unset bits of the LCD
status register (STAT) to show/hide the layers rendered by the PPU.

set_bkg data, set_sprite data: load tile data into the background/window tile VRAM or
object tile VRAM.

set_win_tile xy, set_bkg tile xy, get_bkg tile xy, set_bkg tiles: Get/set background tilemap
VRAM data with individual tile indices or from arrays of tile indices.

SCX_REG: The SCX register, used to scroll the Geometry Boy level in the x-direction.
SWITCH_ROM_MBC5: Switch the ROM bank that MBC5 is mapping to 0x4000 - Ox7FFF.
ENABLE_RAM MBC5: Enable external cartridge SRAM to read/write game data to.

move_sprite, set_sprite_tile: set the sprite pixel (z,y) position or tile index (appearance) by
modifying the OAM.

disable_interrupts, enable_interrupts, add LCD, add VBL: enable/disable interrupts, add in-
terrupt handlers for LCD interrupts and VBlank interrupts. The LYC register and STAT register
can be accessed with the macros LYC_REG and STAT REG, which are used to set up the LCD scan
line interrupt.

wait_vbl_done(): halts the CPU until the VBlank interrupt is done, prevents the updating the
VRAM more frequently than the PPU can draw it to the LCD.

joypad(): Reads and returns the state of the JOYP register as per Nintendo’s specifications (de-
bounces the input) [3]. GBDK provides macros to identify which button is pressed (returned
from joypad()): J_START, J SELECT, J_UP etc.

GBMD and GBTD

The Game Boy Tile Designer (GBTD) and Game Boy Map Designer (GBMD) are applications
written by Harry Mulder that use a GUI to design tiles and maps for the Game Boy. With the
GBTD, you can design sets of 8 x 8 pixel tiles, and export them to .c/.h files with an array of
chars representing the tiles. This tile data can be loaded into VRAM with the GBDK functions
set_bkg data and set_sprite_data. Using a previously designed tileset, the GBMD allows you
to draw maps and export .c/.h files with an array of chars, each char representing a tile in the
map by the index of that tile in the tileset. The GBDK provides the function set_bkg tiles to
set multiple tiles in the background tile map VRAM from these map arrays.

We encountered difficulties when designing letter tiles - which are challenging to make readable
and appealing given limited pixel art experience. Thus, we wrote a python program img to_tile.py
that parses any image with less than four colors into a grid of tiles encoded as character arrays. We
used this program to parse 8x8 font tilesets sourced online [0] into tile data for in Geometry Boy.

OpenMPT and GBT-player

OpenMPT is a popular music sequencing software used to create the background music for
Geometry Boy [7]. OpenMPT allows for four channel audio editing, aligning with the Game Boy’s
APU, and it can export .mod sound samples used by the GBT-Player library [7]. GBT-Player is
an open-source music player library for the Game Boy. It has a mod2gbt executable that converts
a .mod file into .c arrays representing the song [3]. Further, it has a library of assembly language
functions to play the song on the Game Boy [3] that decode the array of music pattern data row
by row and load data into the registers/RAM areas of the corresponding APU channels [8].

Virtual Platform

Without access to a real Game Boy, this project used the BGB emulator to run the geometry_boy.gb
ROM. This emulator was chosen for its high accuracy, debugging features (e.g., VRAM viewer),
and cross-platform compatibility (can run on Linux with wine). The VRAM viewer debugging
feature proved essential for learning how to program for the Game Boy, and allowed us to expand
the scope of the project based (e.g., parallax, “infinite scrolling”).

BGB emulates many features of the real Game Boy that are listed on the BGB website [9],
including clock-exact LCD and sprite emulation, and accurate sound output. It has been extensively
tested on many Game Boy ROMs; “if your ROM works in BGB, it will most likely work on hardware
too” [9].

To run this project on a real Game Boy, we need three pieces of hardware: a Game
Boy, a type 0x1B flash cartridge, and a flash cartridge reader/writer. Re-programmable type 0x1B
cartridges (with MBC5 and SRAM) are available from insideGadgets for 22 USD [10].

A flash cartridge reader/writer like the GBxCart RW (30USD from insideGadgets, cross-
platform compatible) provides an interface between the computer and the flash cartridge, and
a GUI to allow geometry_boy.gb to be “flashed” onto the cartridge [I1]. The cartridge can then
be inserted into the Game Boy and run like any other game. The Game Boy itself is the most
expensive piece of hardware; we found listings on amazon for 100 USD [12].

Implementing Geometry Boy

Below we describe the implementation of various features of the Geometry Boy, with reference
to the Game Boy’s hardware capabilities described above.
Tiles, Maps, and Parallax

Figure 4a shows the tiles that are loaded into background VRAM while the game is running.
These are the tiles that are used to construct the level maps (figure 4c) and the on-screen text and
progress bar (figure 2).

https://shop.insidegadgets.com/product/gameboy-2mb-32kb-fram-flash-cart-ultra-low-power/
https://shop.insidegadgets.com/product/gbxcart-rw/
https://www.amazon.ca/Nintendo-DMG-01-Original-Game-Console/dp/B000R08L7M

allle, sl sl ol sl sl e .

..‘..l. = _-II'F*EFH ‘.‘lll‘.‘l--------
22ASE T ABCDE G HEEEE I
[JHLMNOP RS TILVLUDR & b & b b bbb b bbb bbb
mr-AEERA111C o o e o o o e

(a) Tile VRAM. (b) Parallax Tiles. (c) A portion of Level 1 in GBMD.

Figure 4: Tile VRAM and maps in Geometry Boy. Note that the parallax tiles are not all loaded
into VRAM at one time, instead they are stored in code ROM.

Parallax is a technique where some background objects scroll slower so they appear further away
[13]. Implementing parallax on the Game Boy is difficult because there is only one background layer,
and the level obstacles use this layer [13]. (Due to hardware limitations - max 40 sprites, 10 per
LCD line - we cannot use the sprite layer for this purpose). To generate the illusion of parallax,
for each tile in figure 4a that the player should be able to “see behind” (e.g., the spike tiles) we
construct a corresponding parallax tileset shown in figure 4b. Each parallax tileset consists of eight
tiles with a green line that moves left to right behind the main object, opposite to the direction the
game scrolls. After constructing the map using the tileset in figure 4a, we can simply substitute the
tiles from the parallax tilesets into the index of the original tile in tile VRAM to make it appear
where the original tile was placed in the map (recall that the map just stores tile indices which are
loaded into background VRAM). Beginning from the 0™ tile in each parallax tileset, each frame of
the game we substitute the next tile from each parallax tileset into the same index in tile VRAM so
the green line moves against the scrolling direction, providing the illusion that it is scrolling more
slowly than the rest of the background.

ROM Bank organization

All the code for the main game functionality is in geometry_boy.c, which is stored in bank
0 (so its code data is always accessible). From romusage, an open-source tool for estimating the
ROM usage of a .gb ROM file [11], we can see that this code takes up 14689 bytes, or 89% of the
ROM bank. All the code from the gbt_player library is stored in bank 1. If the project were to
continue, we would include all code in banks 0 and 1. All the music and tile data is stored in bank
2.

There are four maps used in Geometry Boy, one for the title screen and one for each of the
three levels. The title screen map is 60 x 18 tiles (width, height), while each of the level maps is
455 x 18 tiles. With each tile index in the map taking 1 byte, the title map uses 1080 bytes, while
each level map uses 8190 bytes (a level width of 455 was chosen so that two level maps could fit
into one bank). The maps for the title screen and level 1 are stored in bank 3, while the maps for
the levels 2 and 3 are stored in bank 4. More levels can be easily be added by using higher banks.

Scrolling

As aforementioned, the background map stored in VRAM is 32 x 32 tiles, too small for our
455 x 18 tile levels. Scrolling in the x-direction with SCX_REG sets the pixel x coordinate of the left
edge of the view-able 20 x 18 tiles on the background tile map (SCX_REG € [0, 32(8) — 1] = [0, 255],
see figure 5).

To allow for scrolling with maps larger than those that fit into memory, we use the background
VRAM as a rolling buffer for the map data, which is dynamically loaded from code ROM (imple-
mented in the function scroll bkg x). As the viewable area moves left to right (and then wraps
around) in VRAM, we over-write the VRAM column that has just moved off the left edge of the
viewable window with the tile indices of background map data 32 columns ahead. For example,

N O O s W N =

© N O s W N =

ERGATTEMPT :: 008

TTTTTTTT
T T

!

m i
n ui

] um

] EEE EE
T L[]
—.)E
SCX_REG[;

BG map LCD

Figure 5: Scrolling in Geometry Boy

in figure 5, the blue column has just been hidden from view, and over-written with tile indices 32
columns ahead in the background map array. The red column is the next to be over-written. In
this way, the player never sees the tiles changing, and the map appears to scroll contiguously as
the viewable area wraps around to reveal these tiles.

Main Game Loop
The main game loop in game () looks like

while(1){
if (vbl_count == 0){ // global uint8_t
wait_vbl_done();

3
vbl_count = 0;
// ... game logic below, including background_x_shift += player_dx ...

}

vbl_count is incremented in a VBlank interrupt handler shown below, counting the number of
VBlank interrupts that occurred during the last iteration of the game loop. The if statement on
line 2 only waits for the VBlank interrupt (so the CPU can update the graphics for the next frame)
if it has not yet already occurred during the last game loop, speeding up execution [15].

The game logic runs at a slower rate than the LCD screen updates (60 Hz). However, to keep
scrolling smooth, we update the SCX_REG in the VBlank interrupt handler based on a stored global
scroll variable background x_shift [15]. We register a VBlank interrupt handler using add_VBL
that has code like:

void vbl_interrupt_game() {
SHOW_WIN;
vbl_count++; // global uint8_t
old_scroll_x += (background_x_shift - old_scroll_x + 1) >> 1; // global uintl6_t
// vbl_number | old_scroll_x | background_x_shift | SCX_REG |
// 1 0 | 3 | 2 | (old_scroll_x += 4/2
// 2 | 2 | 3 | 3 | (old_scroll_x += 2/2
SCX_REG = old_scroll_x & 255; // equivalent to modulo 255

2)
D)

}

Line 4 interpolates 01d_scoll_x so that if this interrupt runs multiple times without background x_shift

changing, SCX_REG is updated more smoothly (with smaller increments), as shown in the comments
below line 4 [15].

Notice that the VBlank interrupt handler shows the window layer. This means that the next
frame will start drawing with the window shown. We include this so that we can display a progress
bar and attempt counter on the window layer which will not scroll with the background layer. To
ensure that the window layer does not cover the entire screen, we set LYC_REG = 16 and STAT REG
|= 0x40 (set bit 6) so that an interrupt occurs when the PPU draws the 16" scan line (two tiles
from the top of the LCD screen). We register a handler for this interrupt that hides the window
layer, so the window layer is only displayed for the top two tiles of the screen (figure 5).

Saving Data

At the beginning of execution, we enable external SRAM with ENABLE RAM MBC5. At the start
of SRAM (0xA000), we store a flag character ‘s’ if the cartridge has saved data. If it is not ‘s’,
we initialize two arrays of zeros of length num_levels to store the attempts and progress per level,
and write ‘s’ to the start of SRAM to indicate there is now saved data there. Whenever the player
loses or wins a level, these arrays are updated with the number of attempts and best level progress.

Physics

While general to most platformer games, here we give an overview of our implementation of
physics. The y-position and velocity of the player are tracked with the global variables player_y
and player_dy. A variable on_ground tracks if the player is on the ground or not and lose/win
track if the player has lost or won. The physics update is as follows:

1. If Up is pressed and on_ground = 1, give the player an upward jump velocity player dy =
-PLAYER_JUMP_VEL (the y-coordinate increases down the LCD screen).

2. If the player is not on the ground, increase the players downward velocity player_dy += GRAVITY
to make it fall.

3. Check collisions in the x-direction (accounting for the new background_scroll_x, but without
accounting for the new player dy). Here we can check if the player has run horizontally into an
obstacle or the finish line, setting lose = 1 or win = 1, respectively.

4. Update player_y += player_dy. Assume the player is not on the ground by setting on_ground
= 0.

5. Check collisions in the y-direction (accounting for the player’s new y-velocity and position). Here
we can check if the player is falling onto, or already on, a block and set on_ground = 1 player_dy
= 0 and player_y accordingly (so the player rests on-top of and not inside a block). We also
check if the new player position results in collisions with any other obstacles.

We check for collisions by iterating over the four tiles the player
sprite is touching. For each of these tiles, we determine its index
by reading background VRAM. Based on the tile index, we check if
the collision box of the player overlaps with the collision box(es) of
object under consideration by checking for rectangle overlap. This
is illustrated in figure 6, where the player’s red collision box is
checked for overlap with the four red collision boxes of the spike.
As shown, collision boxes are pixel perfect.

Music

First, a .mod file is generated for each of the songs via the Open-
MPT software. Then, using the mod2gbt executable, the .mod file Figure 6: Collision checking

is converted to a .c file which has all the patterns of a particular {}e tile in the player’s bottom

right corner.

song stored as an array of chars. In the same .c file, these patterns
are combined together in a larger array song Data (one for each
song) that orders the patterns of a song (i.e., orders the “verses” of the song). This procedure is
repeated for all four songs (one for the main screen and three for the levels). A combined music file
music_sample.c was created which stores the data for all the songs, which is compiled to bank 2.
Then, GBT-Player functions abstract the Game Boy music hardware details and are used to
play the song. gbt_play(song Data, storage_bank) is used to initialize a particular song in the
music player by passing the array of song Data, the location of the song via storage bank (bank
2 in our case). Furthermore, the songs were made to loop via a call to gbt_loop(1). Lastly, the
gbt_update() function is called in the game loop, which runs a single row of the music pattern in
song Data per call.

Other Optimizations

Functions that are called a few times but run many times are made inline. The function
rect_collision with player checks if a collision box overlaps with the player’s collision box. It
is called more than a few times; however, we decided to trade larger code memory for reduced
execution time (because collision checking is an expensive part of the game loop).

We used minimal variable widths to reduce code/stack memory usage [3]. We also used
unsigned variables where possible to reduce the execution time of various operations (e.g., compari-
son) [3]. We used global variables where possible, which use code memory instead of stack memory,
and are generally more efficient on the Game Boy [3].

We used multiplication and division by powers of two where possible, and implemented these
as bit-shifts. Whenever performing a modulo by a power of two (e.g., when setting the player’s
y-position to be tile-aligned), we instead used a bit mask (e.g., x % 32 == x & 31)%.

Next Steps

Geometry Boy is a fully functional game that runs smoothly in an emulator. Our primary next
step would be to test it on original Game Boy hardware to ensure compatibility. We expect few
complications since the BGB emulator provides an authentic representation of the Game Boy.

Additionally, we would like to write the game without the use of GBDK, instead writing
in assembly and using the Rednexr Game Boy Development System (RGBDS) toolchain/linker to
increase speed and control of the low-level logic (GBDK is known to be the simplest but certainly
not the most optimized or transparent compiler) [16].

Some additional game features we want to add are:

e More vehicles: Geometry Dash currently has eight different vehicles, of which Geometry Boy
only includes two [17].

e Gravity and scrolling inversion: Some sections of levels in Geometry Dash invert gravity or invert
the scrolling direction [17].

e Custom level designer: Geometry Dash allows users to design, play, and share custom levels [17].
Sharing could be accomplished with an as yet unused Game Boy feature: serial data transfer
via a link cable, which uses an interface similar to SPI.

e Timing music and levels: Geometry Dash doesn’t just have music, the beats of the music are
timed to the required jumps in the level.

Inewer versions of SDCC will automatically make some of these optimizations [3], but we include them explicitly.

10

References

[16]
[17]

Hackeyb, Geometry dash wiki, Oct. 2021. [Online]. Available: https://geometry-dash .
fandom.com/wiki/Geometry_Dash_Wiki.

A. N. Diaz, A. Vivace, Beannaich, et al., Pan docs, 2022. [Online]. Available: https://gbdev.
io/pandocs/Specifications.html.

P. Felber, L. Malmborg, M. Hope, and D. Galloway, Gbdk 2020 docs, 2020. [Online]. Available:
https://gbdk-2020.github.io/gbdk-2020/docs/api/.

Choosing a flash cart, 2022. [Online]. Available: https : //shop . insidegadgets . com/
choosing-a-flash-cart/.

A. Bourque, Game boy advance sound channel 1. [Online]. Available: http://belogic.com/
gba/channell.shtml.

WinTakeAll, File:atari st character set 8z8.png, 1985. [Online|. Available: https://commons.
wikimedia.org/wiki/File:Atari_ST_character_set_8x8.png.

Openmpt, 2022. [Online]. Available: https://openmpt.org/.

A. N. Diaz, Gbt player v3.0.8, 2020. [Online]. Available: https://github.com/AntonioND/
gbt-player.

Lyth, Bgb, 2021. [Online|. Available: https://bgb.bircd.org/.

Gameboy 1mb, 32kb fram flash cart (ultra low power, custom boot logo, mbcl mode), 2022.
[Online|. Available: https://shop . insidegadgets . com/product/gameboy - 2mb- 32kb -
fram-flash-cart-ultra-low-power/.

Gbzcart rw (gameboy/gbc/gba cart reader, writer € flasher), 2022. [Online]. Available: https:
//shop.insidegadgets.com/product/gbxcart-rw/.

Original game boy console, 2022. [Online]. Available: https://www.amazon.ca/Nintendo-
DMG-01-0riginal-Game-Console/dp/BOOOROSL7M.

Nes background parallaz explained - audiovisual effects pt. 03, Aug. 2020. [Online]. Available:
https://www.youtube.com/watch?v=wt73KPS_23w&t=200s.

bbbbbr, Romusage, Jan. 2022. [Online|. Available: https://github.com/bbbbbr/romusage/.

Zalo, Zalo ds blog, Jun. 2016. [Online]. Available: http://zalods.blogspot.com/2016/07/
game-boy-development-tips—and-tricks-ii.html.

R. Eldred Habert, Rgbds, 2022. [Online]. Available: https://rgbds.gbdev.io/.

Portals — geometry dash, Oct. 2021. [Online|. Available: https://geometry-dash.fandom.
com/wiki/Portals.

11

https://geometry-dash.fandom.com/wiki/Geometry_Dash_Wiki
https://geometry-dash.fandom.com/wiki/Geometry_Dash_Wiki
https://gbdev.io/pandocs/Specifications.html
https://gbdev.io/pandocs/Specifications.html
https://gbdk-2020.github.io/gbdk-2020/docs/api/
https://shop.insidegadgets.com/choosing-a-flash-cart/
https://shop.insidegadgets.com/choosing-a-flash-cart/
http://belogic.com/gba/channel1.shtml
http://belogic.com/gba/channel1.shtml
https://commons.wikimedia.org/wiki/File:Atari_ST_character_set_8x8.png
https://commons.wikimedia.org/wiki/File:Atari_ST_character_set_8x8.png
https://openmpt.org/
https://github.com/AntonioND/gbt-player
https://github.com/AntonioND/gbt-player
https://bgb.bircd.org/
https://shop.insidegadgets.com/product/gameboy-2mb-32kb-fram-flash-cart-ultra-low-power/
https://shop.insidegadgets.com/product/gameboy-2mb-32kb-fram-flash-cart-ultra-low-power/
https://shop.insidegadgets.com/product/gbxcart-rw/
https://shop.insidegadgets.com/product/gbxcart-rw/
https://www.amazon.ca/Nintendo-DMG-01-Original-Game-Console/dp/B000R08L7M
https://www.amazon.ca/Nintendo-DMG-01-Original-Game-Console/dp/B000R08L7M
https://www.youtube.com/watch?v=wt73KPS_23w&t=200s
https://github.com/bbbbbr/romusage/
http://zalods.blogspot.com/2016/07/game-boy-development-tips-and-tricks-ii.html
http://zalods.blogspot.com/2016/07/game-boy-development-tips-and-tricks-ii.html
https://rgbds.gbdev.io/
https://geometry-dash.fandom.com/wiki/Portals
https://geometry-dash.fandom.com/wiki/Portals

