
CSC2532: Statistical Learning Theory Winter 2024

Project Report: Transformers As Statisticians
Ben Agro

1 Introduction
Part of the success of large language models (implemented with transformers [1]) can be attributed

to their apparent ability to learn new tasks from in-context examples, as opposed to traditional models,
which require explicit training for a specific task. Towards a formal understanding of ICL, in this report, we
distill two main ideas from the recent paper “Transformers as Statisticians: Provable In-Context Learning
with In-Context Algorithm Selection” (TaS) [2]. Section 2 provides preliminaries on transformers and
in-context learning. Main idea 1: Section 3 discusses how transforms can perform in-context gradient
descent, which is the underlying mechanism by which transformers can implement the many in-context
algorithms, including ridge regression, generalized linear models, and lasso. Main idea 2: Section 4
describes one mechanism by which transformers can select the appropriate in-context learning algorithm
based on its context. TaS owes its namesake to this mechanism because it is similar to how a statistician
can look at data and choose the appropriate model.

2 Transformers and In-Context Learning

Transformers:1

Denote the transformer input sequence as a matrix H = [h1, . . . ,hn] ∈ RD×N , where each hi is a
token in the sequence. We will focus on “encoder-mode” transformers, which have multiple layers, and
each consisting of a self-attention (SA) layer and a residual multi-layer perceptron (MLP) layer. Differing
from the popular transformer architecture, TaS replaces the softmax used in SA with a (normalized) ReLU
activation function σ(t) = ReLU(t) = max(0, t);

h̃i = [SAθ(H)]i = hi +

M∑
m=1

1

N

N∑
j=1

σ(⟨Qmhi,Kmhj⟩)V mhj , (2.1)

where M is the number of attention heads, and they do not include layer normalization.2 The residual MLP
layer takes the form MLPW 1,W2(H) = H + W 2σ(W 1H), where W 1,W 2 are learned weight matrices.

In-Context Learning: An ICL instance consists of tokens of the form

H =

x1 x2 . . . xN xN+1

y1 y2 . . . yN 0
p1 p2 . . . pN pN+1

 ∈ RD×(N+1), pi =

 0D−(d+3)

1
I{i < N + 1}

, (2.2)

where xi ∈ Rd iid∼ Px are the input features and yi ∈ R ∼ Py|xi
are the labels. Here ti = I{i < N + 1}

indicates the “training”3 examples; the test example is at token index N + 1. Each ICL instance may
have a different data distribution, and the goal is to learn/construct a fixed transformer that can reliably
predict the hidden test label yN+1 on large set of data distributions. Note that we include the 0D−(d+3)

in the input token (D to be specified) to serve as a placeholder for the transformer to save intermediate
results. Moreover, we can use the 1 to implement constant offsets.

1We assume the reader is already familiar with transformers [1].
2These changes allow for convenient constructions of transformers in the proofs of TaS, but they are a minor detail as

prior work has shown an equivalence between normalized ReLU and softmax activations [3, 4].
3In ICL, the model weights are not updated with this data; the prediction is made in the inference pass of the transformer.

1

3 In-Context Learning via Gradient Descent
TaS proves that transformers can implement a broad class of standard machine learning algorithms

in context, including least-squares, ridge regression, generalized linear models, and lasso. The linchpin of
these results is the construction of a transformer that can perform in-context gradient descent (GD).

Desiderata: Let L̂N (w) := 1
N

∑N
j=1 ℓ(w

Txj , yj) be the empirical risk to minimize via GD:

wt+1
GD := wt

GD − η∇L̂N (wt
GD), (3.1)

for some loss function ℓ. We want to construct a transformer with L + 1 layers that can approximately
implement GD, meaning that hl

i,∀l ∈ {1, . . . , L} will contain weights ŵl that approximate the GD weights
wl

GD on the training examples, and the final tokens will contain the predicted labels ŷi = ⟨ŵL,xi⟩. Further,
the ||ŵl − ŵl

GD|| increases linearly in t, and so does the test error |ŷN+1 − yN+1| in L.
Transformer Construction: The idea is that the first L layers will each approximate one step of

GD, and that the (L+ 1)-st layer will output the predicted label. Let us start by constructing a single GD
step with an attention layer. We assume that the previous layers have an approximation of the weights
ŵt (or zero for the initial tokens). We need to assume that ∂sℓ(s, t) is approximable by sum of M ReLUs,
which means that there are some cm, am, bm, dm,∀m ∈ {1, . . . ,M} such that

sup
(s,t)

|
M∑

m=1

cmσ(ams + bmt + dm) − ∂sℓ(s, t)| ≤ ϵ, (3.2)

which is true for a broad class of functions [2]. Note that ∇L̂N (w) = 1
N

∑N
j=1 ∂sℓ(w

Txj , yj)
Txj , so that

the gradient of the empirical risk and gradient update step based on the training data can be written as:

1

N

M∑
m=1

N∑
j=1

cmσ(am⟨w,xj⟩ + bmyj + dm)xjtj = ∇L̂N (w) + O(ϵ) (3.3)

ŵl − 1

N

M∑
m=1

N∑
j=1

ηcmσ(am⟨ŵl,xj⟩ + bmyj + dm)xjtj = ŵl − η∇L̂N (ŵl) + O(ϵ). (3.4)

We notice the similarity between the LHS of the above expression and the self-attention operation eq. (2.1).
Indeed, simple algebra (Proposition C.2 in TaS) shows that for input tokens of the form in eq. (2.2) with
the ŵl stored as an intermediate output in the placeholder slot, one can choose Qm,Km,V m to obtain an
SA update that equals the LHS of eq. (3.4). A natural question is whether chaining these approximate GD
updates together results in a good approximation of the final weights. One can show (Lemma 14 in TAS)
that if we additionally assume ℓ is convex in the first argument, then the weight-space error is linear in l:
||ŵl − ŵl

GD|| = O(lϵ). Thus, we can stack L of these attention layers (setting the residual MLPs to output
identity) to build a transformer that can approximate L steps of GD with weight-space error in O(Lϵ).
Additionally, using the fact that σ(t)− σ(−t) = t for t > 0, it is easy to construct a 2-head attention layer
that implements ⟨ŵL,xi⟩ (each head implements one of the σ’s), and with the linear error bound on ŵL,
the prediction error is also linear in L.

4 In-Context Algorithm Selection
Just as a statistician can look at data and choose the appropriate model, TaS shows that transformers

can implement in-context algorithm selection. We will investigate one of the two proposed mechanisms
proposed in for in-context algorithm selection; post-ICL validation

Desiderata: Assume we have a validation loss L̂val(f) = 1
Nval

∑|D|val

i=1 ℓ(f(xi), yi), ℓ is approximable

by a sum of ReLUs. We split the in-context examples into a training set Dtrain (labelled ti = 1) and a
validation set Dval (labelled ti = −1). The goal is to build a transformer that (1) Inference: implements
K in-context algorithms on Dtrain, {f1, . . . , fK} and outputs their predictions on all in-context examples,
(2) Evaluation: approximates the loss L̃val(fk) ≈ L̂val(fk) of each fk on Dval, (3) Selection: for each xi

2

including the test input (ti = 0), outputs a convex combination f̂ of the predictions {f1(xi), . . . , fk(xi)}
that achieves near the minimum validation loss.

Transformer construction : To implement (1), we note that transformers can be combined in
parallel, meaning that if we have K transformers (possibly with a different number of layers or heads), each
implementing a sequence-to-sequence function Pk : RD×(N+1) → RD×(N+1),

TFθk
: Hk =

[
H(0)

H
(1)
k

]
→

[
H(0)

Pk(Hk)

]
,∀k ∈ {1, . . . ,K}, (4.1)

then, there is a transformer that implements all K sequence-to-sequence functions in parallel:

TFθ :


H(0)

H
(1)
1

. . .

H
(1)
K

 →


H(0)

P1(H1)
. . .

PK(HK)

 (4.2)

In section section 3, we discussed that transformers can implement many in-context algorithms, so we
can stack K in parallel to implement a single transformer that outputs [∗, f1(xi), . . . , fK(xi),0K+1] in the
placeholder slots of hi, where we use ∗ to hide the inputs and labels.

To implement (2), we construct a single attention layer that ingests [∗, f1(xi), . . . , fK(xi),0K+1] and
outputs [∗, f1(xi), . . . , fK(xi), L̃val(f1), . . . L̃val(fK), 0] in the placeholder slots of all hi. Mirroring our
discussion of gradient descent in section 3, because ℓ is approximable by a sum of ReLUs, we can construct
a single attention layer that implements L̃val ≈ L̂val using the validation indicator ti = −1.

Finally, to implement (3), we construct a three-layer selection transformer mapping

[∗, f1(xi), . . . , fK(xi), L̃val(f1), . . . L̃val(fK), 0] → [∗, f1(xi), . . . , fK(xi), L̃val(f1), . . . L̃val(fK), f̂(xi)], (4.3)

where f̂ is a convex combination of the fk that are within γ of the minimum validation loss:

f̂ =

K∑
k=1

λkfk, s.t λ1, . . . , λK ≥ 0,

K∑
k=1

λk = 1, and λk > 0 only if L̃val(fk) ≤ min
k∗∈[K]

L̃val(fk∗) + γ. (4.4)

Define ck =
∑

p ̸=k σ(L̃val(fk)−L̃val(fp)), and notice that if ck ≤ γ then L̃val(fk) ≤ mink∗∈[K] L̃val(fk∗)+γ.
We construct the first layer of the selection transformer with a residual MLP (the attention layer implements
identity) that maps from the LHS of eq. (4.3) to [f1(x1), . . . , fK(xi), c1, . . . , cK , 0] which is straightforward
to construct because ck is a sum of ReLUs.

Next, let uk = σ(1 − γ−1ck), which is in [0, 1] and uk > 0 iff ck ≤ γ. We construct the second layer
with an MLP mapping from the above intermediate tokens to [f1(x1), . . . , fK(xi), u1, . . . , uK , 0]

Finally, selecting λ1 = 1−σ(1−u1), λk = σ(1−u1 − · · · −uk−1)−σ(1−u1 − · · · −uk),∀k ≥ 2 satisfies

the conditions of eq. (4.4). We can re-arrange to get the following expression for f̂ (letting f0 = fK+1 = 0):

f̂ =

K+1∑
k=1

σ(1− u1 − · · · − uk−1)(fk(xi)− fk−1(xi)) =

K+1∑
k=1

∑
w∈{0,1}

σ(1− u1 − · · · − uk−1)(−2w + 1)fk−w(xi). (4.5)

Notice that this has a very similar form to the SA operation in eq. (2.1), so we can implement this with a

single attention layer with 2(K+1) heads. Thus, the transformer will predict f̂(xN+1) on the test example.
Stacking the (1) inference, (2) evaluation, and (3) selection layers gives us a transformer that is a

“statistician”, as it can dynamically select the appropriate in-context algorithm based on the context.

5 Conclusion
One could imagine how these simple mechanisms of in-context gradient descent and algorithm selec-

tion, operating in the high-dimensional representation space of a large transformer, could result in the
observed and impressive emergent in-context learning behaviors of LLMs. However, while the TaS’s em-
pirical experiments show that a transformer can do these in-context tasks, they do not investigate if it
is by the proposed mechanisms, leaving room for future work to understand if large language models are
implementing this algorithm selection mechanism in practice.

3

References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,

“Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.

[2] Y. Bai, F. Chen, H. Wang, C. Xiong, and S. Mei, “Transformers as statisticians: Provable in-context
learning with in-context algorithm selection,” Advances in neural information processing systems,
vol. 36, 2024.

[3] M. Wortsman, J. Lee, J. Gilmer, and S. Kornblith, “Replacing softmax with relu in vision transformers,”
arXiv preprint arXiv:2309.08586, 2023.

[4] K. Shen, J. Guo, X. Tan, S. Tang, R. Wang, and J. Bian, “A study on relu and softmax in transformer,”
arXiv preprint arXiv:2302.06461, 2023.

4

	Introduction
	Transformers and In-Context Learning
	In-Context Learning via Gradient Descent
	In-Context Algorithm Selection
	Conclusion

