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Abstract

Foundation models like Large Language Models (LLM) and Vision Language Models (VLM) have
been shown to outperform task-specific models in many domains with little to no fine-tuning. This new
artificial intelligence paradigm inspires us to apply pre-trained VLMs to text-to-video retrieval. While
these models cannot directly process videos, we investigate a simple workaround: prompting the VLM to
provide detailed descriptions of video frames to generate text documents that can be used for semantic
text search. We show this simple approach provides a competitive baseline for zero-shot video retrieval
using the MSR-VTT benchmark, indicating the promise of applying foundation models to the task of
video retrieval. We present extensive ablations to understand which parts of the system are important
for performance and highlight many avenues for future work on applying VLMs to video retrieval.

1 Introduction

Figure 1: Alexei A. Efros at the 2023 Conference on Computer Vision and Pattern Recognition (CVPR).
Towards testing this hypothesis, in this work, we apply the latest open-source Vision Language Models to
the task of video retrieval from text queries.

In recent years, Large Language Models (LLMs) have proven to be useful for a wide variety of tasks, from
chat-bots [13, 3] to text retrieval [20, 28, 11, 25]. These LLMs are pre-trained on large datasets of text
from the internet and exhibit excellent zero-shot (no additional training) and fine-tuned (minimal additional
training) performance.

Building on the success of LLMs, Vision-Language Models (VLMs) have emerged to suit new use cases
like image description and text-to-image generation [7, 2, 22]. These so-called “foundation models” depart
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from the norm for most of the 2010s: training a deep neural network for one or a few related tasks. Some,
like pre-eminent researcher Alexei A. Efros (see fig. 1), believe that these foundation models will soon surpass
most, if not all, previous task-specific models.

Towards testing this hypothesis, in this work, we apply the latest open-source VLMs zero-shot to video
retrieval from text queries. In this task, users ask text queries, and the system retrieves the top k relevant
videos. Modern approaches to this task train deep neural networks to embed the text query and videos in a
shared vector space. Distance/similarity measures can be used to estimate how well a text query (embedding)
matches a video (embedding), and the top k most similar videos can be retrieved using k-nearest neighbors
(KNN).

In this work, we use a (relatively small) pre-trained VLM to describe images from the given videos to
generate a text document for each video. We retrieve the most relevant documents (or sections of documents)
to a provided text query using semantic search methods. This simple approach achieves competitive zero-shot
video retrieval results without requiring task-specific models or training. We conduct extensive ablations
investigating the effect of model size, semantic search method, using audio, directly using VLM embeddings
instead of text generations, and using a sliding context window to endow the VLM with some temporal
understanding of the videos.

In the remainder of this paper, we will explain related work and background knowledge, describe our
method and its variants, and present and discuss results. We have a Google Colab demo:
https://colab.research.google.com/drive/1yzXtIWKpKGXke4TqUAGQMtrVbSj PRsh?usp=sharing, and our
code is available to reproduce our results here: https://github.com/BenAgro314/CSC2508 final project.

2 Related Work

2.1 Video Retrieval

Given a query sentence, video retrieval aims to search for a video that is semantically relevant to the query
sentence from a video database [4]. Modern approaches to this task train deep neural networks to map from
text and video to embeddings in a shared feature space, trained using text-video pairs from the internet [10,
9, 12, 14, 1]. Videos are retrieved by finding the top k video embeddings with the highest cosine similarity
to the text query embedding. These approaches rely on training task-specific models on paired video-text
data, which is expensive and time-consuming. In contrast, our work uses pre-trained VLMs and does not
require any training for video retrieval.

2.2 Multi-Modal Foundation Models

Recent developments in Large Language Models (LLMs) initiated mainly by the GPT family of models
(GPT-2, GPT-3, ChatGPT, GPT-4) have inspired developments in multi-modal foundation models that
leverage diverse data modalities. Vision Language Models (VLMs) utilize the modalities of images and text
due to their abundance on the internet, computational tractability, and various downstream applications. In
this work, we use the open-source VLM LLaVA [7], which jointly trains a fine-tuned version of the LLaMA
LLM [21] and the CLIP visual encoder [16]. Much more powerful VLMs such as GPT-4 Vision [13] and
Gemini Ultra [3] are becoming available through APIs, but these are currently too expensive to be used to
process the frames of many videos.

2.3 Semantic Text Search

Modern text search (e.g., question-answering, document retrieval) is accomplished through the use of text
embeddings, which are vectors that represent the semantic information in a piece of text (e.g., a sentence or
document) [6]. Text embeddings can be compared via various distance or similarity measures (e.g., cosine
similarity) and used in k-nearest-neighbours search for similar text. In this work, we utilize the embeddings
from AnglE [6], a model that provides state-of-the-art text embeddings across various tasks. AnglE uses a
new optimization procedure in complex space to overcome the problem of vanishing gradients inherent to
the cosine similarity objective commonly used during training.
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Figure 2: A diagram of our proposed system.

3 Method

Refer to fig. 2 for a high-level diagram of our proposed approach. OpenAI’s Whisper speech recognition
system first processes the audio from the database of videos [17] to produce timestamped closed captions
(e.g., what people say in the videos). Videos are processed frame-by-frame, using only one video frame
per second to reduce overhead. The video frame and associated closed caption (if available) are ingested
by the VLM LLaVA [7], which is prompted to produce a detailed description of the video frame, taking
into account the closed caption. The frame descriptions are aggregated for the entire video to create a text
document. Given a text query, we employ semantic search to find the most relevant documents/videos. To
do this, we embed all the documents using AnglE (angle optimized text embeddings) [6] and embed the text
prompt. The top k document embeddings are retrieved via cosine similarity, and the corresponding video(s)
are returned.

Below, we describe each component in more detail.

3.1 Speech Recognition

For some videos, the content and context are provided mainly in narration/speech. However, most multi-
modal LLMs only accept images, not audio, in their additional modalities. Thus, we used OpenAI’s Whisper
[16], a speech recognition system, to generate closed captions for each video. To scale this to many videos,
we employed wHISper.cpp, which allows for high-performance inference of Whisper (5-10x faster than real-
time).

3.2 Video to Text

To extract video frames into text descriptions, we employed the VLM LLaVA [7]. LLaVA is available in two
sizes: 7B parameters and 13B parameters. To run this efficiently on our available hardware, we use a 5-bit
quantized version of LLaVA 13B, along with LLaMA.cpp, a library for high-performance inference of LLMs.

For each video, we split it into a sequence of images at one frame per second for computational tractabil-
ity. LLaVA receives the following prompts:

A chat between a curious human and an artificial intelligence assistant. The assistant gives

helpful, detailed, and polite answers to the human’s questions.

USER: I am watching a video. The video is at the following image: <insert image tokens here>.

Using this context, caption the image in detail.

ASSISTANT: <sample LLaVA with temperature 0.1>

We highlight in green the “system prompt”. If there are closed captions associated with that frame, we
change the prompt to include them:

A chat between a curious human and an artificial intelligence assistant. The assistant gives

helpful, detailed, and polite answers to the human’s questions.

USER: I am watching a video. The video is at the following image: <insert image tokens here>,
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Figure 3: A diagram of the sliding window mechanism for processing videos with LLaVA. The “generated
descriptions” are sampled from LLaVA and saved to create a “text document” for each video.

with the following closed captions: <insert closed captions here>

Using this context, caption the image in detail.

ASSISTANT: <sample LLaVA with temperature 0.1>

LLaVA has a context window of 2048 tokens, which can fit only 2-3 video frames in practice. We use a
sliding window approach to endow LLaVA with a temporal understanding of the video while adhering to
the limited context window. Namely, after the first two frames are processed using the above prompts, we
remove the first frame from the context, slide the second frame to the front of the context (without moving
the system prompt), and then add the subsequent frame to the now free part of the context. See fig. 3 for a
detailed illustration. The generated descriptions are aggregated for all frames in the video to create a “text
document”.

3.3 Text Search

We want a text-search method that understands semantics. For example, in response to an image of hobbits
from the Lord of the Rings movies, LLaVA might generate the caption “The image depicts three small
boys standing next to a wizard in a setting that looks like Middle Earth”. An example query might be
“Frodo Baggins” (the name of a hobbit). Although the keywords “Frodo” and ”Baggins” do not appear in
the caption, it should still be ranked as relevant due to the tangential Lord of the Rings reference “Middle
Earth.”

To accomplish this, we employ the latest text embedding approach AnglE [6], to generate embeddings for
the text documents and text queries and then use cosine similarity to retrieve the most relevant documents.
These embeddings are 1024-dimensional vectors that encode semantic information about the text. Specifi-
cally, we generate a separate embedding for every LLaVA-generated caption in the document (each document
has a set of associated embeddings, one for each second of the corresponding video). We also embed the text
query. We score document similarity to the query sentence based on the most similar embedding in that
document. Then, we return the top k most similar documents.
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4 Experiments

In this section, we describe and discuss our experiments: the dataset and metrics we used for evaluation and
results for comparison against the state of the art and various ablations.

Dataset and Metrics The dataset we used for evaluation is “Microsoft Research Video to Text” (MSR-
VTT) [24] consisting of 10,000 video clips from 20 categories; each video clip is annotated with 20 English
sentences. For comparison against the state-of-the-art (table 1) we use the standard “1k-A” test split of
1000 videos from prior works [27, 5, 8, 26]. For our ablations and additional experiments (all other tables),
we use the smaller validation split of MSR-VTT with 497 videos.

The evaluation metric is Recall @ k: the percentage of query sentences with their associated video
retrieved in the top k videos. Following prior works [23, 5, 8, 26], we report Recall @ 1, Recall @ 5, Recall
@ 10, and the average recall across k = 1, 5, 10.

Zero-Shot Text-to-Video Retrieval Figure 4 and table 1 compare our method (described section 3)
against the state-of-the-art zero-shot video retrieval methods from the MSR-VTT leaderboard [27]. Note
that we omit methods from the leaderboard that trained on MSR-VTT (e.g., for pre-training). While our
method does not achieve state-of-the-art performance, it provides a competitive baseline without requiring
task-specific models or training. These results indicate the promise of applying Vision-Language Foundation
models to various tasks, including video retrieval. We note that we outperform all methods published before
mPLUG-2 [23] in February of 2023.
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Figure 4: Average recall of recent zero-shot video retrieval methods [27]. The state-of-the-art (upper frontier)
is colored in blue, our method is highlighted in red, and the other methods are colored pink. Note that we
omit methods from the leaderboard that trained on MSR-VTT (e.g., for pre-training).

5



Recall @ 1 Recall @ 5 Recall @ 10 Average

mPLUG-2 [23] 47.1 69.7 79.0 65.3
UTM-L [5] 42.6 64.4 73.1 60.0
BT-Adaptor [8] 40.9 64.7 73.5 59.7
Florence [26] 37.6 63.8 72.6 58.0
Ours 38.8 63.0 73.0 58.3

Table 1: Comparing our method against the SOTA zero-shot text-to-video retrieval methods on the MSR-
VTT [24] benchmark [27].

Effect of VLM Model Size Table 2 investigates the effect of VLM parameter count on video retrieval
performance. We see that LLaVA 13B outperforms LLaVA 7B, indicating that using even larger VLMS like
GPT-4 would yield impressive results.

Recall @ 1 Recall @ 5 Recall @ 10 Average

LLaVA 7B 42.8 71.0 79.6 64.5
LLaVA 13B 43.2 71.9 80.2 65.1

Table 2: Comparing video retrieval performance of our system across different VLM model sizes. Note that
due to hardware constraints, all models used 5-bit quantization.

Effect of text retrieval method In table 3, we investigate various methods for text retrieval with a
fixed set of documents (those produced by LLaVA 13B in table 1). BM25 [19] ranks each document based
on its keywords with respect to the query keywords. SentenceTransformer [18] maps each caption to a 768-
dimensional embedding for semantic search or clustering tasks (we specifically use the all-mpnet-base-v2

model). We try three different methods of aggregating these sentence-level embeddings into document-level
retrieval scores:

• Max pooling: Produce a single embedding vector for each document by taking the maximum features
across all captions in each document.

• Mean pooling: The same as max pooling, but taking the average features.

• Max sim: A document’s “max sim” score is the maximum cosine similarity between the query embed-
ding and its caption embeddings.

In addition to SentenceTransformer, we ablate the same three options using the embeddings from AnglE
[6], specifically using the UAE-Large-V1 model. We observe that AnglE using max similarity gives the best
results; thus, we use that for our main method and results.

Recall @ 1 Recall @ 5 Recall @ 10 Average

BM25 29.5 51.8 60.6 47.3
SentenceTransformer max pooling 25.4 52.2 64.6 47.4
SentenceTransformer mean pooling 37.4 65.9 74.8 59.4
SentenceTransformer max sim 37.8 65.7 75.2 59.6
AnglE max pooling 22.4 48.7 60.1 43.7
AnglE mean pooling 40.2 68.8 77.8 62.3
AnglE max sim 43.2 71.9 80.2 65.1

Table 3: Comparing the video retrieval results using different text search methods. In this experiment, the
documents generated from the videos are fixed.
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Effect of Using Audio Table 4 shows the video retrieval results with and without using the whisper-
generated closed captions in the VLM prompt. As expected, adding audio increases performance because,
for some videos, the spoken words provide as much, if not more, information about the content of the video
than the images.

Recall @ 1 Recall @ 5 Recall @ 10 Average

Without Audio 42.4 70.5 79.3 64.1
With Audio 43.2 71.9 80.2 65.1

Table 4: Comparing video retrieval with and without using closed-captions from Whisper as input to the
VLM.

Effect of Sliding Context Window In this experiment, we ablate the effect of using the sliding context
window mechanism depicted in fig. 3. We compare it against the simple alternative of captioning each
frame individually and independently of one another. The results are presented in table 5, where we observe
significant gains in recall from using the sliding window. The sliding window gives the model a temporal
understanding of the video, which is necessary to understand actions and content spanning multiple frames.

Recall @ 1 Recall @ 5 Recall @ 10 Average

Without Sliding Window 39.9 68.0 76.8 61.6
Sliding Window 43.2 71.9 80.2 65.1

Table 5: Comparing video retrieval results with and without using the sliding context window depicted in
fig. 3.

Can we use LLaVA’s embeddings instead of text generations? One natural question is why we are
using text outputs of LLaVA instead of the last layer of features before token sampling. These features contain
all the information required to sample the text. Motivated by this observation, we tried saving LLaVA’s
embeddings generated for each input video frame instead of the generated text. We also embedded the query
using LLaVA. We used the max-similarity approach to retrieve the top k most relevant documents. To ensure
the embeddings for the query and the video frames have a similar semantic meaning, we adjust the prompts
for LLaVA. We use the same system prompt as in section 3.2. We use the prompt “USER: Describe the

following image in detail for embedding the video frames. ASSISTANT:”, and for embedding the
query text, we use the prompt “USER: Describe the following text in detail. ASSISTANT:”. We
design these prompts such that the text that follows the prompts (and thus the embeddings used to generate
that text) would be as similar in meaning as possible.

Table 6 presents the results, where we observe that using LLaVA’s embeddings performs much worse
than using text. We hypothesize that LLaVA’s embeddings are optimized for future prediction of text and
not text retrieval tasks. This result explains why works like AnglE [6] fine-tune LLaMA’s embeddings for
text retrieval.

Recall @ 1 Recall @ 5 Recall @ 10 Average

Embeddings 10.9 24.6 32.9 22.8
Text 43.2 71.9 80.2 65.1

Table 6: Comparing using LLaVA’s embeddings and LLaVA’s image captions to represent videos.

Failure Cases In Figure 5, we introspect some failure cases by showing the query sentence, the ground
truth video, and the top video retrieved by our system. We notice that the videos retrieved mostly align
with the query; however, the video retrieval task is ambiguous as multiple videos reasonably match the query
sentence. For the failure case with the query sentence “a throwback band lipsynchs poorly while they stand
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in front of a church”, the model incorrectly retrieved a choir singing inside a church. While visually similar,
these videos have very different meanings. Understanding poor lipsynching would require more fine-grained
visual and audio understanding than our system currently has (because it processes one frame per second
and only gets audio information through closed captions).

Sentence Ground Truth Video k=1 Retrieved Video

a band performing in a 
small club

a fighting scene on tv

a video about avengers

a throwback band 
lipsynchs poorly while they 
stand in front of a church

woman trying out food 
and cooking

Figure 5: Visualizing some failure cases of our model.
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5 Conclusion and Future Work

In this work, we have investigated the applicability of Vision Language Models to video retrieval by generating
captions for the videos frame-by-frame. In the zero-shot setting, this technique achieves competitive results
with the current state-of-the-art, indicating that there is promise in further investigation. In this work,
we only scratched the surface of the potential applications of foundation models to video retrieval. Some
directions for future work include:

• Applying larger VLMs like OpenAI’s GPT-4 Vision [13] and Google’s Gemini [3]. Furthermore, there
are now open-source VLMs like CogVLM [22] that greatly outperform LLaVA.

• Using VLMs with a larger context window than LLaVA’s 2048 tokens (e.g., GPT-4 Vision Turbo has
a context length of 128k) would allow for a large sliding window and for more frames to fit in context,
bringing improved temporal understanding of the videos.

• The current text retrieval system performs nearest-neighbor search among text embeddings; the doc-
ument embeddings are created independently of the query. A query-dependent re-ranking step with a
cross-encoder or other method (e.g., LLMs [20]) could improve text-search performance.

• The biggest bottleneck to scaling this system to larger video datasets is the inference time of the
per-frame inference time of the VLM. While we used LLaMA.cpp to make inference as fast as possible
(around 3 seconds per frame), there is room for improvement. Namely, the CLIP vision encoder was
not offloaded to the GPU, greatly increasing its inference time. Offloading vision encoders to the GPU
is an open issue on the LLaMA.cpp GitHub, and would unlock many opportunities for future research.

• While our experiments in table 6 show that using LLaVA’s embeddings is ineffective for video retrieval,
we believe this avenue holds promise as a more principled retrieval method. Namely, these embeddings
should contain all the information of all possible captions that the VLM could generate, so they should
be capable of improving retrieval performance. Future work in VLM prompting and fine-tuning for
video retrieval could yield fruitful results.

• Due to limited computational resources, we could not extensively ablate different prompting procedures,
such as system prompts. Prior work has found that VLM performance strongly depends on the prompts
[15].

• In our approach, we convert audio to text using Whisper speech recognition. Investigating modern
multi-modal foundation models that include audio as an input stream could improve performance (see
the failure cases discussed above).
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