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Abstract: There is a growing demand for robotics systems in safety-critical applications, in-

cluding transportation, policing, defense, medicine, and home care. These systems must reli-

ably and efficiently estimate their state and that of the environment by solving an optimization

problem. Many contemporary state estimation systems employ local algorithms to solve these

optimization problems, which may return sub-optimal estimates called local minima. This can

have dangerous consequences, such as a self-driving car thinking it is in the wrong lane.

Recent work in certifable algorithms has attempted to solve this problem by developing

methods that can find a globally optimal solution or prove that a solution is globally optimal.

Certifiable algorithms are important for detecting autonomy stack failures and increasing the

robustness of safety-critical systems. Many problems in robotics have been certified, including

rotation averaging, pose-graph optimization, multiple point-cloud registration, landmark-based

simultaneous localization and mapping (SLAM), calibration, and image segmentation.

In this work, we attempt to find a globally optimal algorithm for the problem of stereo local-

ization with re-projection error. This problem involves estimating the pose of a stereo camera

given known landmarks in the world by minimizing matrix-weighted pixel-space errors. Prior

work has yet to develop a certifiable algorithm for this problem because of its non-polynomial

cost function. This certificate, or globally optimal solver, would have applications in visual

odometry, localization, SLAM, and all the many other autonomy systems that solve this opti-

mization problem. Further, the techniques developed to find a globally optimal algorithm for this

problem may help develop globally optimal algorithms for other non-polynomial optimization

problems.

The code for this project is available here: https://github.com/BenAgro314/bagro_engsci_thesis
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Notation

a This typeface is used for real scalars

a This typeface is used for real column vectors

A This typeface is used for real matrices

I The identity matrix

0 The zero matrix

A ≥ 0 denotes that the matrix A is positive-semi definite

a ≥ 0 denotes that the elements of a are all non-negative

RM×N The vector space of real M ×N matrices

F⃗a A vectrix representing a reference frame in three dimensions

O(3) The orthogonal group

SO(3) The special orthogonal group, used to represent orientations and

rotations

SE(3) The special Euclidean group, used to represent poses and rigid

transformations

Cba A 3 × 3 rotation matrix that takes points expressed in F⃗a and re-

expresses them in F⃗b, which is rotated with respect to F⃗a

Tba A 4 × 4 rotation matrix that takes points expressed in F⃗a and re-

expresses them in F⃗b, which is rotated and/or translated with re-

spect to F⃗a

T A shorthand notation expressing Tsw which is the transformation

matrix that takes points expressed in the world frame F⃗w and re-

expresses them in the sensor frame F⃗s

ei Denotes the ith column of I

x



1 Introduction

Robotic state estimation involves understanding the physical environment and the robot’s state

through sensor input [1]. The algorithms underlying perception and state estimation will par-

ticipate in increasingly important — and safety critical — roles in society, e.g., autonomous

driving technology and space robotics. Typically these algorithms have to solve an optimization

problem, where an objective function is minimized with respect to some state variables, subject

to a set of constraints [2]. These optimization problems are typically highly complex with many

local minima; solutions that are optimal within a local region of the state-variable space but may

not be the globally optimal solution (the global minimum) [3]. Most optimization algorithms

are solved using efficient local search methods (e.g., gradient descent) and may return poor lo-

cal minima [4]. In real-world robotics, getting stuck in a local minimum can have disastrous

consequences, e.g., an autonomous car thinking it is in the wrong lane [3].

While local search methods are not guaranteed to find the globally optimal solution, con-

temporary certifiably optimal algorithms can determine if the local solution is also the global

solution [5]. This certificate of optimality allows the robot to make informed decisions based

on its confidence in the optimality of the state estimate. Prior works have developed certifiably

optimal algorithms for many problems in robotics, including rotation averaging (RA) [6]–[9],

pose graph optimization (PGO) [10]–[12], multiple point cloud registration (MPCR) [13], [14],

simultaneous localization and mapping (SLAM) [4], robust estimation [15]–[21], extrinsic cal-

ibration [22]–[24], and segmentation [25], to name a few. As of the time of writing, there is no

general method for developing a certifiable algorithm, nor is there a method for determining if

a given optimization problem admits a certificate. Each problem is tackled individually, usually

drawing on previous techniques from the literature [5].

Localization is the problem of, given known landmarks in the world and sensor observations

of those landmarks, determining where the sensor is in the world [1]. In the stereo localization

problem, a stereo camera is used; a sensor with two or more lenses and a separate image sensor

for each lens [1]. No one has yet developed a true certifiable algorithm for stereo localization
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minimizing pixel-space errors, an important problem given the prevalence of this algorithm in

robotic systems. Further, developing more certifiable algorithms will add to the ‘cookbook’ of

techniques applicable to similar problems in the future [5].

This project aims to develop methods to achieve or certify global optimality in the stereo

localization problem. Our goals are to (i) develop algorithms that solve the stereo localization

problem with guaranteed global optimality and (ii) develop and test an efficient certificate of

the stereo localization problem.

This document details our progress towards certifiably optimal stereo localization. We pro-

vide the necessary theoretical background to understand the problem and our approach, discuss

related work, and identify the research gap. We describe and derive our proposed methods,

assess them experimentally, and draw insights from them. Finally, we highlight future research

opportunities building on our work.
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2 Background

This section provides the theory and related work necessary to understand our method and the

research gap.

2.1 Theory

2.1.1 Localization

The localization problem involves determining the pose (position and orientation) of a sensor

frame F⃗s with respect to the world frame F⃗w from sensor measurements of features in the world

with a known position (e.g., a known map) [1]. Refer to fig. 2.1 for an illustration of the lo-

calization problem. Formally, given the positions of N points in world coordinates and their

corresponding sensor measurements, the localization problem seeks the transformation matrix

that re-expresses points in F⃗w in F⃗s:

T = Tsw =

C r

0T 1

 ∈ SE(3), (2.1)

where C ∈ SO(3) represents the rotation and r ∈ R3 the translation.

2.1.2 Stereo Camera Model

A stereo camera consists of two cameras rigidly attached to one another with a known trans-

formation between them [1]. The difference in pixel coordinates of a feature observed by both

cameras can be used to estimate the depth of that feature relative to the camera. See fig. 2.2 for

a schematic of the stereo camera rig.

In the stereo camera model, the observation of a point takes the form of a pair of pixel

3
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Figure 2.1: An illustration of the localization problem. We want to find the rigid transformation

T between F⃗w and F⃗s given sensor measurements of the landmarks pi.
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Figure 2.2: A depiction of the stereo camera rig.
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measurements in each camera, which we stack and express as

y =


uℓ

vℓ

ur

vr

 , (2.2)

which are illustrated in fig. 2.2. We locate the sensor frame at the midpoints between the two

cameras. For simplicity, we assume the two cameras are identical and in a fronto-parallel con-

figuration, depicted in fig. 2.2. The baseline, b, is the distance between the origin of F⃗ℓ and

F⃗r (the two optical centers). The focal length, f , of the camera is the distance from the optical

center to the image plane. Let fu and fv denote the focal length of the camera expressed in row

and column pixel coordinates, respectively. Let cu and cv denote the pixel coordinates of the

optical center of the cameras projected onto their respective image planes. Following [1], y is

related to a point ps (expressed in F⃗s) as:

y = M
1

eT3 ps

ps, (2.3)

where M is the intrinsic parameter matrix, and ei ∈ R4 is the ith column of the 4 × 4 identity

matrix. We notice that ps/(e
T
3 ps) is the projection of the point onto the plane zs = 1. With

basic trigonometry rules, one can derive the intrinsic parameter matrix of the stereo camera:

M =


fu 0 cu fu

b
2

0 fv cv 0

fu 0 cu −fu b
2

0 fv cv 0

 . (2.4)

If the point is expressed in F⃗w as pw, we can write the forward stereo camera model as:

y = M
1

eT3Tpw

Tpw. (2.5)

2.1.3 Optimization

Localization methods are often formalized as maximum likelihood estimation problems (max-

imizing the likelihood of the data given unknown pose parameters), which rely on solving an

underlying optimization problem [12]. The general form of an optimization problem is

min
x

f0(x) (2.6a)

subject to fi(x) = 0, ∀i ∈ {1, . . . , K} (2.6b)

hi(x) ≤ 0, ∀i ∈ {1, . . . , P}, (2.6c)
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where the set of x satisfying the constraints, D, is nonempty [2]. Such a problem is called

convex if its objective function f0 and constraint set D are convex. Convex problems have the

desirable property that every local minimum is also a global minimum. They, thus, are far easier

to solve than non-convex optimization problems, which may have multiple local minima.

2.1.4 Least-Squares Pose Optimization

By modeling forward sensor models with Gaussian distributions, many maximum-likelihood

localization methods simplify to a non-linear least-squares optimization problem [26] [1]:

min
T

J(T) =
∑
n

gn(Tpn)
TWngn(Tpn) (2.7a)

subject to T ∈ SE(3) (2.7b)

where gn(·) are non-linear error functions, and Wn are symmetric weight matrices, usually

taken as the inverse of the measurement covariance matrix. This section outlines the necessary

background for local optimization methods of J(T) subject to T ∈ SE(3).

First, we choose an unconstrained parameterization of T to make eq. (2.7) an unconstrained

optimization problem. Following [1], a convenient parameterization uses the exponential map

between SE(3) and its Lie algebra of: T = exp(ξ∧), where ξ ∈ R6×1. The definition of the

(·)∧ operator is

ξ∧ =

ρ
ψ

 =

ψ× ρ

0T 0

 , and


u

v

w


×

=


0 −w v

w 0 −u

−v u 0

 , (2.8)

where ψ,ρ ∈ R3×1. Crucially, selecting such a parameterization turns our constrained opti-

mization problem over the entries of T into an unconstrained problem over ξ.

Next, starting with an initial guess or the pose estimate from the previous iteration, T, we

perturb this guess on the left:

T← exp(ϵ∧)T, (2.9)

where ϵ is the perturbation. Then we linearize g about ϵ:

gn(exp(ϵ)Tpn) ≈ gn((1 + ϵ
∧)Tpn) (2.10)

≈ gn(Tpn) +
∂gn

∂(Tpn)
ϵ∧(Tpn). (2.11)
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Now we use the identity

ξ∧q = q⊙ξ, ∀ξ ∈ R6×1,q ∈ R4×1, (2.12)

where ζ
η

⊙

=

ηI −ζ×
0T 0T

 , ∀ζ ∈ R3×1,η ∈ R, (2.13)

to rearrange:

gn(exp(ϵ)Tpn) ≈ gn(Tpn) +
∂gn

∂(Tpn)
(Toppn)

⊙ϵ (2.14)

= βn +∆T
nϵ. (2.15)

Then, the objective to be minimized at each iteration with respect to our perturbation parameter

ϵ is

J(ϵ) =
∑
n

(βn +∆T
nϵ)

TWn(βn +∆T
nϵ). (2.16)

We can differentiate with respect to ϵ to solve for the optimal update parameters ϵ∗:

∂J

∂ϵT
= 2

∑
n

∆nWn(βn +∆T
nϵ) = 0 (2.17)

=⇒ −

(∑
n

∆nWnβn

)
=

(∑
n

∆n∆
T
n

)
ϵ∗, (2.18)

which can be solved for the (locally) optimal ϵ∗. Finally, we update our pose estimate T ←

exp(ϵ∗
∧
))T, and iterate. This will serve as a baseline method used for the comparison against

the localization algorithms we develop. Further, while time-consuming, running this local solver

for many different initial conditions and taking the best solution provides a likely means to find

a globally optimal solution.

2.1.5 Stereo Localization Optimization Problem

With the stereo camera model and least-squares pose optimization in hand, we can introduce

and solve stereo localization as a local optimization problem. Our optimization problem for

stereo localization minimizes the re-projection error:

min
T

J(T) =
N∑

n=1

(
yn −M

1

eT3Tpn

Tpn

)T

Wn

(
yn −M

1

eT3Tpn

Tpn

)
(2.19a)

subject to T ∈ SE(3) (2.19b)

where:

7



• {pn ∈ R4×1 | ∀n ∈ {1, . . . , N}} are the known homogeneous coordinates of the land-

mark points in the world,

• {yn ∈ R4×1 | ∀n ∈ {1, . . . , N}} are the known and noisy stereo camera measurements

of the landmarks (eq. (2.5)),

• M ∈ R4×4 is the intrinsic stereo camera matrix,

• {Wn ∈ R4×4 | ∀n ∈ {1, . . . , N}} are known/chosen weight matrices,

• andT is the unknown world-to-sensor frame coordinate transformation matrix (eq. (2.1)).

This optimization problem seeks to minimize the error in pixel space, i.e., find the pose such

that the pixel coordinates of the landmarks align with the measurements. The measurement

error in pixel space is a Gaussian. Thus, Wn is usually taken of the inverse of the covariance

matrix such that this optimization is a maximum-likelihood estimation problem.

Gauss-Newton Method For Stereo Localization

From our optimization problem in eq. (2.19), we can see

gn(Tpn) = gn(exp (ϵ
∧)Toppn) = yn −M

1

eT3Tpn

Tpn, (2.20)

with

∂gn

∂(Tpn)
=
−1

eT3Tpn

M+
1

(eT3Tpn)
2
MTpne

T
3 . (2.21)

We have specified gn and its derivative, meaning we can use the local optimization algorithm

described in section 2.1.4.

This local optimization method is prone to local minima. We demonstrate this with an

example problem, shown in fig. 2.3. We can see that the solution from the Gauss-Newton method

in red is far from the global minima in blue. This motivates certifiable methods for the stereo

localization problem.

2.1.6 Lagrangian Duality Theory

This section describes Lagrangian duality theory, the basis for certifiably optimal algorithms.

As an example, we apply it to a QCQP, the results of which will be used in our methods.
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x
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z

F⃗w

x

y

z
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y
z

Figure 2.3: An example problem demonstrating a local minimum in the stereo localization

problem. The green dots are the landmarks, the blue frame is the global minimum, and the red

frame is a local minima.

Consider the general optimization problem in eq. (2.6). The Lagrangian, L, is defined as:

L(x,λ,ν) = f0(x) +
K∑
i=1

λifi(x) +
P∑
i=1

νihi(x). (2.22)

MinimizingLwith respect tox,λ,ν turns eq. (2.6) into an unconstrained optimization problem.

We call the optimization problem in eq. (2.6) the primal problem, and denote its optimal value

with p⋆.

The Lagrangian dual function is

g(λ,ν) = inf
x∈D

L(x,λ,ν). (2.23)

As described by Boyd et al. [2], the dual function lower bounds the optimal value of the primal

problem, i.e., for an λ ≥ 0 and any ν:

g(λ,ν) ≤ p⋆, (2.24)

as depicted in fig. 2.4. To find the largest lower bound that can be obtained from the dual

function, we set up the dual problem:

max g(λ,ν) (2.25a)

subject to λ ≥ 0. (2.25b)

This problem is concave; thus, it is always possible to solve for the globally optimal dual vari-

ables λ,ν [2]. Let d⋆ be the maximal value from eq. (2.25). If the equality

d⋆ = p⋆ (2.26)
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p⋆

d⋆

(a) Weak duality.

p⋆ = d⋆

primal
dual
dual of dual

(b) Strong duality.

Figure 2.4: An illustration of Lagrangian duality in the cases of weak and strong duality, assum-

ing Slater’s constraint qualifications. Note the curves are for illustration purposes only. Under

weak duality, we cannot certify the problem nor solve the dual of the dual for the globally op-

timal solution. If strong duality holds, the dual problem provides us with a means to certify

solutions, and the dual of the dual is a tight convex relaxation of the primal problem.

holds, then we say the duality gap is zero and strong duality holds (see fig. 2.4b). It is not

guaranteed that strong duality holds in general. However, the dual problem allows us to check

if a solution is globally optimal. If we solve the dual problem and find d⋆ = p⋆ (fig. 2.4b), then

we know our solution is globally optimal (but if p⋆ ̸= d⋆ we cannot say we are not at a global

minimum in general). Further, if we know strong duality holds, then if d⋆ ̸= p⋆, we know our

solution is not globally optimal.

Slater’s Condition: If the primal problem eq. (2.6) is convex or concave, and it is strictly

feasible, then strong duality holds [2]. Referring to eq. (2.6) strict feasibility means that ∃x

such that

fi(x) = 0,∀i ∈ {1, . . . , K} and, (2.27)

hi(x) < 0,∀i ∈ {1, . . . , P}. (2.28)

The combination of convexity and strict feasibility is called Slater’s condition or Slater’s con-

straint qualification. Empirically, for many optimization problems in robotics, Slater’s condition

holds. If strong duality also holds, then the dual of the dual is a tight convex relaxation of the

primal problem, as shown in fig. 2.4b. In this case, we can solve this primal relaxation for the

globally optimal solution.
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2.1.7 QCQP

A QCQP is an optimization problem where the cost function is quadratic, and there are quadratic

constraints on the variables [5]. This class of optimization problems is important because least-

squares cost functions (eq. (2.7)), commonly used in localization, can often be re-written as a

QCQP, and there is much theory about how to approach solving a QCQP globally optimally [5].

A convenient expression (for later derivations) of a QCQP is:

min
x

xTQx (2.29a)

subject to xTAkx = bk, ∀k ∈ {1, . . . , K}, (2.29b)

where x ∈ RD and Q,A1, . . . ,AK are symmetric [2]. While problems of this form are non-

convex and NP-hard in general, the application of duality theory leads to convenient expressions

for the certificate and convex relaxation, described below.

We can write the Lagrangian of eq. (2.29) as

L(x,λ) = xTQx+
K∑
k=1

λk(bk − xTAkx) (2.30)

=
∑
k

λkbk + xT

(
Q−

K∑
k=1

λkAk

)
x (2.31)

= bTλ+ xTH(λ)x, (2.32)

where λ =
[
λ1, . . . , λK

]T
∈ RK , b =

[
b1, . . . , bK

]T
∈ RK , and H(λ) = Q −

∑
k λkAk ∈

RD×D. We can write the dual function as

g(λ) = inf
x
L(x, λ) =

bTλ if H(λ) ≥ 0,

−∞ otherwise.
(2.33)

In the case that H(λ) ≥ 0, then the maximum of the dual function equals the minimum of the

primal problem because, from eq. (2.32):

∂L

∂x
= 0 =⇒ H(λ)x = 0 =⇒ p⋆ = bTλ, (2.34)

so strong duality holds. This brings us to the QCQP certification problem; given a candidate
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solution x̂, if we can solve

find H,λ (2.35a)

s.t H = Q−
K∑
k=1

λkAk (2.35b)

H ≥ 0 (2.35c)

Hx̂ = 0, (2.35d)

then strong duality holds as per eq. (2.33). Note that if Slater’s constraint qualifiers holds, and

there are more state variables than constraints (D ≥ K), we can solve for λ directly:

H(λ)x̂ = 0 =⇒
[
A1x̂ . . . AKx̂

]
λ = Qx̂. (2.36)

Further, if H(λ) is not positive semi-definite, then strong duality does not hold.

Now we consider the dual of the dual problem. Considering eq. (2.33), we assume that

H(λ) ≥ 0 and we can write the Lagrangian as

L′ = bTλ+ tr

(
X

(
Q−

K∑
k=1

λkAk

))
, (2.37)

whereX ≥ 0 is a symmetric matrix of Lagrange multipliers to enforceH(λ) = Q−
∑K

k=1 λkAk ≥

0. We can re-write L′ as

L′ = tr(QX) +
[
b1 − tr(A1X) . . . bK − tr(AKX)

]
λ. (2.38)

Now the dual of the dual is

q(X) = sup
λ

L′(λ,X) (2.39)

=

tr(QX) if tr(AkX) = bk ∀k

∞ otherwise.
(2.40)

We assume the first condition, leading to the following optimization problem

minimize tr(QX) (2.41a)

s.t tr(AkX) = bk ∀k ∈ {1, . . . , K} (2.41b)

X ≥ 0. (2.41c)

This is a semi-definite program (SDP), which makes solving the primal relaxation amenable to

the wealth of SDP solver machinery. We can also obtain this relaxation if we re-write eq. (2.29)

12
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xTQx

subject to xTAkx = bk,∀kPr
im

al

max
λ

bTλ if H(λ) = Q−
∑

k λkAk ≥ 0

−∞ otherwiseD
ua

l

min
X

tr(QX) if bk − tr(AkX) = 0,∀k

∞ otherwise
, X ≥ 0

Pr
im

al
Re

la
xa

tio
n

duality

duality

re
la

x
ra

nk

Figure 2.5: A summary of duality theory applied to a QCQP.

as

minimize tr(QxxT ) (2.42a)

s.t tr(Akxx
T ) = bk. (2.42b)

If we introduce X = xxT ≥ 0 and relax the constraint that rank(X) = 1, then we arrive back

at eq. (2.41).

In summary, given a QCQP in eq. (2.29) and a candidate solution, we can certify that solution

as globally optimal if we can solve the certification problem in eq. (2.35). If we know strong

duality holds, we can solve the primal relaxation in eq. (2.41) for a globally optimal solution (we

have to extract x from xxT = X). Depending on the context, the certificate may be preferable

to solving eq. (2.41) for computational efficiency (e.g., if x is high-dimensional).

2.2 Related Work

Motivation For Certifiable Algorithms

Yang et al. [15] provide a manifesto on certifiable perception, which defines and motivates

certifiable algorithms: Given an optimization problem that depends on some data, an algorithm

is certifiable if, after solving the optimization problem, it provides a certificate of the quality of

the solution (e.g., a proof of optimality) [15]. State estimation algorithms may return an estimate
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arbitrarily far from the optimal solution without an easy way to check if the answer is sub-optimal

[15]. However, [27] [28] and [15] show that we cannot directly compute an optimal solution

for outlier-robust state estimation problems in polynomial time. Yang et al. [15] describe how

this motivates a paradigm shift towards certifiable algorithms that can perform well on typical

instances and certify correctness while also detecting worst-case instances. This is important

for detecting failures early in the autonomy stack, making safety-critical robotics systems less

brittle [15].

Certifiable Algorithms for Robotics

With this motivation in mind, many prior works have investigated certifiable algorithms for

robotics problems.

Rotation Averaging: [6]–[9] tackle the problem of rotation averaging (RA); determining a

set of absolute orientations from estimated relative rotations between those orientations.

Pose-graph Optimization: [10], [11] investigate certifiable algorithms for pose-graph op-

timization (PGO), an extension of RA that solves for absolute orientation and position from

relative rotations and translations. These works cast the PGO problem as a QCQP and relax

it to an SDP, which was often tight in practice. [12] proved that this SDP relaxation provides

globally optimal solutions for sufficiently low noise levels and develops a structure-exploiting

algorithm to efficiently solve large problem instances with many poses (with a computational

cost comparable to local methods).

Multiple Point Cloud Registration: [13], [14] study certifiable algorithms for multiple point

cloud registration (MPCR) using SDP relaxations and Lagrangian duality. MPCR is the prob-

lem of estimating a set of transformations that align observed point sets with respect to a global

coordinate frame.

Landmark-Based SLAM: [4] unifies the three SLAM sub-problems — RA, MPCR, and

PGO — developing an efficient certifiable algorithm for the full SLAM problem.

Robust Certifiable Algorithms: The above problems estimate unknown transformations from

sensor data. In practice, many of these measurements are outliers [16]. Robust certifiable al-

gorithms seek to estimate these transformations and provide a certificate of this solution in the
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presence of outliers. [15]–[21] present outlier-robust certifiable or globally-optimal algorithms

for specific problems in polynomial time.

Extrinsic Calibration: [22]–[24] study certifiable optimization in the context of extrinsic

sensor calibration (estimating the relative position between multiple sensors).

Image Segmentation: [25] presents a fast and certifiable algorithm for inference in Markov

Random Fields, a technique popular in semantic segmentation.

Monocular PnP: [17], [29], [30] develop certifiable algorithms for the Perspective-n-Point

(PnP) problem, a type of localization where the goal is to estimate the pose of the perspective

camera given n 2D-3D point correspondences. These prior works use the back-projection error

in the formulation of their optimization problem:

min
T

J(T) =
N∑

n=1

(
yne

T
3Tpn −MTpn

)T
Wn

(
yne

T
3Tpn −MTpn

)
(2.43a)

subject to T ∈ SE(3). (2.43b)

This cost is already quadratic in the optimization variables T, so it is easily manipulated into

a QCQP, and strong duality holds in practice. We verify this finding in chapter A. Contrast

this with the re-projection error problem we aim to solve (eq. (2.19)) where our optimization

variables in T appear in the denominator.

Redundant Constraints and The Lasserre Hierarchy

[15], [31]–[34] describe how adding redundant constraints to an optimization problem can be

used to decrease the duality gap ([32] calls this duality strengthening) or tighten the primal

relaxation of a QCQP. [32] states that whenever a new scalar constraint fk+1 is added to the

Lagrangian, a new dual variable λk+1 is added to the domain of the dual problem, and the

bound provided by the new dual problem dnew is at least as good as the one provided by the

previous one d⋆ ≤ d⋆new ≤ p⋆. For example, [32] devise 21 scalar rotation matrix constraints,

15 of which are redundant, to tighten their dual problem.

The Lasserre hierarchy provides a systematic method for adding redundant constraints to

obtain increasingly tighter lower bounds on the optimal value of a polynomial optimization

problem. Each level of the hierarchy α consists of all monomials of degree α formed from

the variables in the previous levels in the hierarchy. All the constraints that accompany those

15



monomials are also added to the problem. While we will not describe Lasserre’s in detail here,

we refer the interested reader to [17] for an approachable treatment and [35] for the original

text. We will apply Lasserre’s hierarchy to the primal relaxation of a QCQP, and rely on two

properties:

1. As the order of the hierarchy α increases, the optimal value of the primal relaxation con-

verges to the lower bound of the QCQP (at each level, the relaxation gets tighter).

2. For some problems, a finite α yields a tight relaxation where the minimum of the primal

relaxation is exactly equal to the global minimum of the QCQP.

2.2.1 Research Gap

As of writing, no one has developed a certifiable algorithm for stereo localization using the re-

projection error. The closest prior art is monocular localization using the back-projection error

(eq. (2.43)). The reason we want to use re-projection error instead of back-projection error is

two-fold:

• Firstly, the pixel-space measurements of landmarks are subject to additive Gaussian noise.

As first discussed by Matthies and Shafer [36], this Gaussian pixel space distribution

manifests as a non-gaussian distribution when projected back into 3D space. However,

the back-projection error problem (eq. (3.47)) is formulated as maximum likelihood es-

timation in 3D space assuming a Gaussian distribution. This is less accurate than the

re-projection problem (eq. (2.19)), where the maximum likelihood estimation is in pixel

space where the noise is a Gaussian distribution. This inaccurate model of uncertainty

inherent to back-projection error is illustrated in fig. 2.6, where the true distribution of

back-projected measurements is in blue, and the Gaussian approximation is shown with

the red ellipse.

• Secondly, much prior work in stereo visual odometry (VO), localization, and SLAM solve

the re-projection error problem [37]–[40]. Thus, if we could find a certifiable algorithm

to solve this problem, it would be widely applicable to many robotics systems.

Our research task may be difficult because the re-projection error is non-polynomial in the pose

variables. Further, this work is the first step towards more complex optimization problems in-

volving the stereo-camera measurement model, including SLAM (and its various sub-problems)

and robust estimation (i.e., measurement/correspondence outliers).
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Left Camera Right Camera

Figure 2.6: An illustration of stereo camera triangulation (the area in blue) uncertainty and

its Gaussian approximation (the ellipse in red), adapted from [36]. Observe that the Gaussian

approximation does support the long tail of the true distribution.
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3 Methods and Results

This section describes our attempts to tighten the stereo localization problem and our findings.

We will begin by introducing the datasets used to evaluate the forthcoming methods. We will

describe each attempted method and evaluate its performance using the datasets, which will

motivate subsequent methods.

3.1 Datasets

This section introduces the datasets for the experimental assessment of our methods.

StereoSim: This dataset is created by a custom simulator used to assess stereo-localization

algorithms. It allows for the random generation of stereo localization problems where the cam-

era and landmarks in its field of view are placed randomly in the world (see fig. 3.1a). It also

generates observations using the forward camera model in eq. (2.5) with added isotropic Gaus-

sian noise on the pixel measurements, as illustrated in fig. 3.1b. Simulation allows us to quickly

generate localization problems with specific characteristics: noise level, number of landmarks,

camera parameters, etc.

StarryNight: This dataset was collected using a stereo camera tracked by a ten-camera

motion capture system [41]. The dataset was collected using twenty reflective landmarks placed

on a black background. The motion capture system measured the positions of the landmarks to

within a few millimeters of accuracy, providing the locations of the known landmarks for our

stereo localization problem. Stereo-image pairs were logged at 15 Hz. We filter images with

less than three features or co-linear features (in 3D space).

Camera Model: StarryNight used a stereo camera with intrinsics fu = 484.5, fv =

484.5, cu = 322, cv = 247, b = 0.24m. We simulated the same stereo camera model for

experiments with StereoSim.
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(a) (b)

Figure 3.1: StereoSim: Left is a depiction of the landmark points, the sensor frame Fs, and the

world frame Fw.

Figure 3.2: A visualization of the camera trajectory and the landmark positions in the Star-

ryNight dataset.

3.2 Stereo Localization as a QCQP

In this section, we re-write eq. (2.19) in the form of a QCQP presented in eq. (2.29). Introducing

the variable vn = 1

e
T
3 Tpn

Tpn:

min
x

J(x) =
N∑

n=1

(yn −Mvn)
T Wk (yn −Mvn) (3.1a)

subject to T ∈ SE(3) (3.1b)

(I− vne
T
3 )Tpn = 0 ∀n ∈ {1, . . . , N} (3.1c)
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where the last constraint follows from the definition of vn. To make the constraints and cost

quadratic, we relax theSE(3) constraint toO(3) and remove any linear terms in the optimization

variables by introducing a homogenization variable ω = 1:

min
x

J(x) =
N∑

n=1

(ωyn −Mvn)
T Wn (ωyn −Mvn) (3.2a)

subject to CTC = I (3.2b)

(ωI− vne
T
3 )Tpn = 0 ∀n ∈ {1, . . . , N} (3.2c)

ω2 = 1 (3.2d)

where

T =

C r

0T 1

 =

c1 c2 c3 r

0 0 0 1

 ∈ SE(3). (3.3)

Note that if we solve for C and it is left-handed (det(C) = −1), then we can simply determine

its right-handed equivalent. The definition of vn implies that its third entry is 1:

vn =


vn1

vn2

1

vn4

 ∈ R4×1. (3.4)

Let

un =


vn1

vn2

vn4

 ∈ R3×1, (3.5)

then we define our optimization variables as

x =



c1

c2

c3

r

u1

. . .

uN

ω



∈ R13+3N . (3.6)
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Below, we derive the Q and Ak matrices such that our quadratic formulation (eq. (3.2)) matches

the standard QCQP form (eq. (2.29)). We will use three convenient relationships:

ω =
[
0 0 . . . 0 1

]
x = eTDx (3.7)

vn = un + e3 =


0 . . . 1 0 0 . . . 0 0

0 . . . 0 1 0 . . . 0 0

0 . . . 0 0 0 . . . 0 1

0 . . . 0 0 1 . . . 0 0

x = Evn
x (3.8)

Tpn =

pn1c1 + pn2c2 + pn3c3 + r

1

 (3.9)

=

pn1I3×3 pn2I3×3 pn3I3×3 I3×3 04×1 . . . 04×1

01×3 01×3 01×3 01×3 0 . . . 1

x (3.10)

= ETpn
x. (3.11)

Cost: Substituting ω = eTDx and vn = Evn
x into our QCQP cost eq. (3.2):

J =
N∑

n=1

(
yne

T
Dx−MEvn

x
)T

Wn

(
yne

T
Dx−MEvn

x
)

(3.12)

= xT

(
N∑

n=1

(
yne

T
D −MEvn

)T
Wn

(
yne

T
D −MEvn

))
x (3.13)

= xTQx (3.14)

Therefore our cost matrix is

Q =
N∑

n=1

(
yne

T
D −MEvn

)T
Wn

(
yne

T
D −MEvn

)
. (3.15)

Rotation Matrix Constraints: From the constraint CTC = I, we get the nine constraints

cTi cj = δij =

1 i = j

0 i ̸= j
, ∀i, j ∈ {1, 2, 3}. (3.16)

Due to symmetry, only 9− 3 = 6 of these constraints are unique:

xTET
ci
Ecj

x, ∀i ∈ {1, 2, 3}, ∀j ∈ {i, . . . 3}, (3.17)

where Eci
∈ R3×(13+3N) has the 3× 3 identity matrix I3×3 ∈ R3×3 in columns 3i− 2 to 3i.
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Constraints on vn: We can re-write eq. (3.2c) as(
(xTeD)I− Evn

xeT3

)
ETvn

x = ETvn
xxTeD − Evn

xeT3ETvn
x = 0 ∈ R4×1. (3.18)

This constitutes four scalar constraints (one per row). Extracting the ith row:

eTi ETvn
xxTeD − eTi Evn

xeT3ETvn
x = 0, ∀i ∈ {1, . . . , 4}. (3.19)

xTeD, eTi ETvn
x, and eTi Evn

x are scalars, so we can re-arrange:

xTeDe
T
i ETvn

x− xTET
vn
eie

T
3ETvn

x = 0, ∀i ∈ {1, . . . , 4}. (3.20)

Notice that if i = 3, then ET
vn
ei = eD, so the equation above is trivial. Thus, we have 3N

additional constraints from vn:

xT
(
ET

vn
eie

T
3ETvn

− eDe
T
i ETvn

)
x = 0, ∀i ∈ {1, 2, 4}, ∀n ∈ {1, . . . , N}. (3.21)

Slack variable constraint: The condition ω2 = 1 adds one more constraint: ω2 = 1 =⇒

xTeDe
T
Dx = 1.

Note that the total number of constraints is 7 + 3N , which is less than the number of un-

knowns in x: D = 12 + 3N .

3.3 Tightness of the Stereo Localization QCQP

Recall from section 2.1.7 that duality theory applied to a QCQP gives us the means to certify

solutions and a tight convex relaxation of the primal problem if strong duality holds. In this

section we assess if strong duality holds for the QCQP derived in section 3.2.

Certificate: In this section, we empirically assess the duality gap of the certificate. Using

StereoSim, we generate a set of 32 {landmark config, ground truth camera pose} pairs —

call these problems — ranging from 5 landmarks to 20. For realistic noise variance levels (in

pixel space) of {0.1, 0.3, 0.5, 0.7, 1, 4}, we generated the simulated stereo camera measurements

for each problem. We also generated 50 random different initial conditions for each problem.

Then, for all noise levels, we solved every problem with the local solver (GaussNewton, from

section 2.1.5) for each initial condition. We took the lowest cost solution on a given problem as

the globally optimal solution. We discarded solutions that did not converge after 100 iterations

of GaussNewton (i.e., did not meet the first-order optimality conditions). Using this, we can
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Figure 3.3: Each dot represents one solution from GaussNewton. The blue dots are globally

optimal solutions, and the red dots are local minima. We observe that while there is a gap

between the minimum eigenvalues of H(λ) for the local and global minima, this gap decreases

as the noise level increases. This result indicates that strong duality does not hold in practice.

classify all other solutions to that problem as globally optimal or not. For each solution, we

also generate the certificate matrix H(λ) and save its minimum eigenvalue. See fig. 3.3 for the

results, where the blue dots denote the solutions classified as globally optimal, and the red dots

are the non-globally optimal solutions.

We see that for these realistic noise levels, there is a gap between the minimum eigenvalue

of the globally optimal solutions and the non-globally optimal solutions. However, this gap

decreases significantly as the noise level increases, indicating that strong duality does not hold.

However, this certificate may be useful in practice if the thresholds on the minimum eigenvalues

of the certificate matrix beyond which to expect local minima are known (e.g., from testing).

Tightness of Primal Relaxation: In this section we empirically assess the duality gap of

the primal relaxation for the stereo localization QCQP. We use the same set of 32 problems

described in the previous section. The results are presented in fig. 3.4a. Notice that the duality

gap p⋆ − d⋆ > 0 in all instances, reaffirming that strong duality does not hold.
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3.4 Redundant Constraints

If the primal relaxation is not tight, it may be tightened with redundant constraints, as discussed

above. Below we derive some redundant constraints for the stereo localization QCQP formula-

tion in section 3.2.

Parallel Constraint Note that vn = 1

e
T
3 Tpn

Tpn, vn and Tpn are parallel. Further, for any

parallel column vectors u,w, ∃c ∈ R such that

u = cw =⇒ uwT = cwwT = wuT . (3.22)

Thus, we can write:

vn(Tpn)
T = (Tpn)v

T
n ∈ R4×4. (3.23)

Now the ith, jth constraint in this 4× 4 matrix is

eTi vn(Tpn)
Tej = eTi (Tpn)v

T
nej, ∀i, j ∈ {1, . . . , 4} (3.24)

=⇒ eTi Evn
xxTET

Tpn
ej = eTi ETpn

xxTET
vn
ej. (3.25)

Because xTET
Tpn

ej , eTi Evn
x, eTi ETpn

x, and xTET
vn
ej are scalars, we can use the fact they

commute to write:

xTET
Tpn

eje
T
i Evn

x− xTET
Tpn

eje
T
i ETpn

x = 0 (3.26)

=⇒ xT (ET
Tpn

eje
T
i Evn

− ET
vn
eje

T
i ETpn

)x = 0 (3.27)

which is of the desired form (eq. (2.29)). Note that when i = j, (ET
Tpn

eje
T
i Evn

−ET
vn
eje

T
i ETpn

)

is skew symmetric, so equation 3.27 is trivially satisfied. Therefore, we will can add (16−4)N =

12N constraints to the QCQP:

xT (ET
Tpn

eje
T
i Evn

− ET
vn
eje

T
i ETpn

)x = 0 else ∀i, j ∈ {1, . . . , 4}|i ̸=j (3.28)

Redundant SO(3) Constraints Apart from the 6 constraints that come from CTC = I in

eq. (3.17), we can add 15 more redundant constraints to characterize C ∈ SO(3) [33]. Let

C =
[
c1 c2 c3

]
=


rT1

rT2

rT3

 . (3.29)
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Because CCT = I, we have the constraints

rTi rj = δij. (3.30)

We note that

ri = Eri
x =


eTi

eTi+3

eTi+6

x, Eri
∈ R3×D, (3.31)

so

xTET
ri
Erj

x = δij ∀i ∈ {1, 2, 3},∀j ∈ {i, . . . , 3}. (3.32)

This amounts to 6 additional constraints. Further, we can exploit the mutual orthogonality of

the columns of C:

c×i cj − ωck = 0, ∀i, j, k ∈ cyclic(1, 2, 3), (3.33)

which results in another 9 constraints:

eTmc
×
i cj − ωeTmck = 0, i, j, k ∈ cyclic(1, 2, 3),m ∈ {1, 2, 3}. (3.34)

Let

ci =
[
c1i c2i c3i

]T
=⇒ c×i =


0 −c3i c2i

c3i 0 −c1i
−c2i c1i 0

 , (3.35)

so

eTmc
×
i = xTET

−c
×
i em

, (3.36)

where ET

−c
×
i em
∈ RD×3 has −e×m in rows 3i− 2 to 3i, with zeros elsewhere. Then we can write

the constraints in eq. (3.34) as

xT
(
ET

−c
×
i em

Ecj
− eωe

T
DEck

)
x = 0, ∀i, j, k ∈ cyclic(1, 2, 3),m ∈ {1, 2, 3}. (3.37)

Cross-Coupling Constraints We also investigated adding new variables and redundant con-

straints associated with those variables. Consider adding the
(
N
2

)
cross-coupling variables
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qij = (eT3Tpi)(e
T
3Tpj), ∀(i, j) ∈ {(i, j)|1 ≤ i < j ≤ N} = S to our state, so

x =



c1

c2

c3

r

u1

. . .

uN

ω

q12

q13

. . .

q1N

q23

. . .

qN(N−1)



. (3.38)

Then we add the following quadratic constraints on x to enforce the definition of qij:

ωqij =
(
eT3Tpi

)(
eT3Tpj

)
. (3.39)

which amounts to
(
N
2

)
constraints. We also get the following expressions:

qijvi = Tpi(e
T
3Tpj),∀(i, j) ∈ S (3.40)

qijvj = Tpj(e
T
3Tpi),∀(i, j) ∈ S (3.41)

which add 6
(
N
2

)
constraints,

qij
qim

=
(eT3Tpi)(e

T
3Tpj)

(eT3Tpi)(e
T
3Tpm)

=
eT3Tpj

eT3Tpm

(3.42)

=⇒ eT3Tpmqij = eT3Tpjqim,∀(i, j,m) ∈ {(i, j,m)|1 ≤ i < j < m ≤ N} (3.43)

which adds
(
N
3

)
constraints and,

qijqkm = qimqkj = qjmqik, (3.44)

∀(i, j, k,m) = {(i, j, k,m)|1 ≤ i < j < k < m ≤ N}, (3.45)

which adds 3
(
N
4

)
constraints. In total we have

(
N
2

)
new variables and 7

(
N
2

)
+
(
N
3

)
+ 3
(
N
4

)
new constraints. These constraints are easy to re-write in the QCQP form (eq. (2.29)) by using

eqs. (3.7), (3.8) and (3.11) and following expression qij =
[
0 . . . 1 . . . 0

]
x = eTqijx.
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Figure 3.4: A plot of the duality gap of the primal relaxation. The plot on the left has no re-

dundant constraints, while the plot on the right includes all of our redundant constraints. Notice

that in both cases, the gap is non-zero for all problems indicating that in both cases, the primal

relaxation is not tight.

3.4.1 Tightness with Redundant Constraints

Figure 3.4a compares the cost gap for the primal relaxation before and after adding redundant

constraints using the same problems described in section 3.3. We added all of the redundant

constraints and variables described in the preceding sections because for each redundant con-

straint, the new dual cost d⋆new will be at least as large as the dual cost without that redundant

constraint [32]. The redundant constraints did not tighten the problem nor appreciably shrink

the cost gap.

3.5 Iterative SDP

Motivated by the lack of strong duality for the primal relaxation, we investigate an iterative

approach described below.

As outlined by [17], [29], [30], the back-projection error PnP problem, in eq. (2.43), has a

tight primal relaxation (we verify this in appendix A). We observe that the back-projection error

(eq. (2.43)) differs from the re-projection error (eq. (2.19)) by a per-point inverse depth squared

weighting:

N∑
n=1

1

z2n
(znωyn −MTpn)

TWn(ωyn −MTpn) (Re-projection error) (3.46)

N∑
n=1

(ωznyn −MTpn)
TWn(ωznyn −MTpn) (Back-projection error), (3.47)

where zn = eT3Tpn. This motivates an iterative algorithm for stereo localization with re-
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projection error, which aims to solve for the optimal back projection error at each iteration,

and uses that intermediate solution to find depth estimates of each point to be used in the next

iteration.

To derive this method, we start by re-writing gn:

gn = yn −
1

zn
MTpn (3.48)

=
1

zn
(znyn −MTpn) (3.49)

=
1

zn

(
yne

T
3 −M

)
Tpn (3.50)

=
1

zn

(
yne

T
3 −M

)(
pT
n ⊗ I

)
vec(T), (3.51)

where ⊗ is the Kronecker product operation, and vec(T) is a column vector of the columns of

T, both defined in [1]. Thus, we can re-write our objective function in eq. (2.19) as

min
x

J = xTQx (3.52a)

subject to CTC = I (3.52b)

(relaxing the SE(3) constraint to O(3)), where

Q =
∑
n

1

z2n
(pT

n ⊗ I)T (yne
T
3 −M)TWn(yne

T
3 −M)(pT

n ⊗ I), (3.53)

and x = vec(T). Also, notice that

z2n = (e3Tpn)
2 (3.54)

= eT3Tpnp
T
nTe3 (3.55)

= eT3

(
pT
n ⊗T

)
vec(T)vec(T)T

(
pT
n ⊗T

)T
e3 (3.56)

= tr
(
(pn ⊗ I)T e3e

T
3 (pn ⊗ I)X

)
(3.57)

where X = vec(T)vec(T)T , meaning we can update 1

z
2
n

in eq. (3.53) without ever extracting T

from X.

To summarize, we start with an initial guess T to initialize X = vec(T)vec(T)T (we use

identity in all of our experiments). Then we compute z2n,∀n with eq. (3.57), and find Q with

equation eq. (3.53). Finally, we solve eq. (3.52) as an SDP for X, and iterate.

Figure 3.6 plots the gap between the cost of the solution extracted from the iterative SDP

method q⋆iter and the globally optimal solution. We use the same 32 problems with 50 different

initial conditions described in section 3.3. Notice that for most problems, the iterative solver
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(a) (b)

Figure 3.5: An example problem where the iterative SDP method does not find the globally

optimal solution. In this case, one landmark is at a significantly larger depth than the others.

converges to within some reasonable tolerance of the globally optimal solution. However, it

does not converge in all instances, as shown by the group of solutions with a large cost gap.

We qualitatively notice a failure cause occurs when there is a large difference in depths between

points in the problem (e.g., a point at a very large depth relative to the others). See fig. 3.5 for an

example. The re-projection error heavily down-weights points with high zn relative to the back-

projection error, so the iterative back-projection solutions jump out of the basin of convergence

on the first iteration.
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Figure 3.6: For many problem instances, this figure plots the gap between the global minimum

cost p⋆ and the cost obtained from the solution found by the iterative SDP algorithm denoted

with q⋆.

3.6 Solver Comparison

3.6.1 Global Optimality

This section compares GaussNewton to our proposed SDP methods. IterSDP is the itera-

tive SDP method discussed in section 3.5, where the solution is refined with GaussNewton.

PrimalRelax is the primal relaxation discussed in section 3.2 with no redundant constraints,

where the solution is refined with GaussNewton.

We used the same dataset discussed in section 3.3 to compare how often GaussNewton,

IterSDP, and PrimalRelax find the globally optimal solution across various noise levels. Fig-

ure 3.7 presents the results.

We observe that IterSDP and PrimalRelax always find the globally optimal solution in

practice, while the GaussNewton does not. These results indicate that IterSDP and Primal-

Relax can help avoid local minima in stereo localization problems.

Figure 3.8 shows this same comparison on StarryNight. We solved each problem with

50 initial guesses for each stereo-image pair in the dataset. We see that all the methods do

well on this dataset, likely because the point configuration is on a plane (which may be an

easy case). However, we still observe that PrimalRelax and IterSDP methods outperform

GaussNewton.
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Figure 3.7: A comparison of the localization methods measuring the percentage of globally

optimal solutions on StereoSim at various pixel-space noise levels.

More investigation is required to determine how the QCQP primal relaxation brings the

solution within the basin of convergence of GaussNewton, even though it is not tight.

3.6.2 Solver Time Efficiency

In this section, we assess the time efficiency of GaussNewton, IterSDP, and PrimalRelax.

Using StereoSim, we construct a dataset with problems containing 4 to 20 landmarks. For

each number of landmarks, we add 50 problems to the dataset with various realistic noise levels.

Then, we run GaussNewton, IterSDP, and PrimalRelax on these problems and produced the

plot in fig. 3.9, which shows the average solution time as a function of the number of landmarks.

We observe that while the runtime of PrimalRelax scales exponentially with the number of

landmarks, GaussNewton and IterSDP have roughly constant and equal solution times. Thus,

there is a strong case for employing IterSDP for practical problems; empirically, it always finds

the globally optimal solution and is equally as fast as GaussNewton.

We also run a practical test by measuring the average runtime across all problems in Stere-

oSim, as if we were trying to localize the camera at every measurement time. Table 3.1 presents

the results, which supports our conclusion that IterSDP is roughly as fast as GaussNewton

and much faster than PrimalRelax.
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Figure 3.8: A comparison of the localization methods measuring the percentage of globally

optimal solution on StereoSim at various pixel-space noise levels.

Solver Average Runtime (s)

GaussNewton 0.23± 0.36

IterSDP 0.20± 0.08

PrimalRelax 1.60± 2.19

Table 3.1: Average solver runtime on StarryNight.

3.7 Visualizing Solution Trajectories

To understand the behavior of GaussNewton, IterSDP, and PrimalRelax, we plot the pose

at each solution iteration in fig. 3.10. We see that GaussNewton requires many iterations to

converge, and its pose estimate jumps around. On the other hand, IterSDP finds the globally

optimal solution in 1-3 iterations from the initial guess, while PrimalRelax takes just one

iteration to get the pose roughly correct. Note that both IterSDP and PrimalRelax show the

iterations where their solution is refined with GaussNewton. This confirms the idea that the

iterative back-projection solutions are a good proxy for the re-projection error problem because

within just one iteration, IterSDP is already near the globally optimal solution.
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Figure 3.9: Solver runtime as a function of the number of landmarks.

(a) GaussNewton (b) IterSDP (c) PrimalRelax

Figure 3.10: Visualizing the solution trajectories of the GaussNewton, IterSDP, and Primal-

Relax. The solver pose at the ith iteration is labeled Fi. PrimalRelax has more than one pose

in its trajectory because the output from the primal relaxation is refined with GaussNewton.
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4 Challenges and Future Work

Unfortunately this set of redundant constraints and additional variables did not tighten the primal

relaxation of the re-projection error stereo localization problem, which means the certificate is

also not tight. This section outlines our attempts to tighten the primal relaxation and describes

areas for future work.

4.1 1D Problem

We begin by attempting to tighten a one-dimensional version of the stereo localization problem,

visualized in fig. 4.1. The robot is at a position x along the real number line. Landmarks are at

positions a1, . . . , aN . The forward measurement model is

yn =
1

x− an
, (4.1)

and the cost function is

J(x) =
∑
n

(
yn −

1

x− an

)2

. (4.2)

Notice that the state variable x appears in the denominator like the re-projection error. We make

the substitution

zn =
1

x− an
, (4.3)

to re-write the problem as a QCQP:

min
x

J(x) =
∑
n

(yn − zn)
2 (4.4)

subject to zn(x− an) = 1 (4.5)

xa1 a2 a3 a4
1

x−a3

Figure 4.1: 1D problem.
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Figure 4.2: Investigating tightness of the 1D problem. The blue dashed line denotes the global

minimum cost for a single problem instance, and the bars indicate the cost of the primal relax-

ation both with and without redundant constraints.

To determine the globally optimal solution, we developed a local solver detailed in appendix

B, and ran this with many different initial conditions to find the best solution. Using a test

problem with 5 landmarks and random Gaussian noise added to the measurements, we observe

that the primal relaxation of the 1D QCQP is not tight, as shown by the gap between the globally

optimal solution and the primal cost in fig. 4.2. In an attempt to tighten this problem, we add

the following redundant constraint:

zj − zi =
1

x− aj
− 1

x− ai
=

aj − ai
(x− aj)(x− ai)

= zjzi(aj − ai) (4.6)

When added to the primal relaxation, this redundant constraint tightens the problem, as shown

by the orange bar in fig. 4.2. This provided the insight that some cross-coupling constraints

between substituted variables of different landmarks may be required to tighten the 3D prob-

lem. Unfortunately, these cross-coupling constraints did not tighten the 3D stereo localization

problem, as detailed in section 3.4.
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Figure 4.3: The 2D problem. T is the unknown transformation matrix, the solid gray arrows

denote the sensor frame, the dashed gray indicates xs = 1 plane, the black dots are the camera

optical sensors, and the colored dots are the landmarks.

4.2 2D Problem

Having tightened the 1D problem, in this section, we attempt to tighten the 2D problem, given

below:

min
T

J(T) =
N∑

n=1

(
yn −M

1

eT2Tpn

Tpn

)T

Wn

(
yn −M

1

eT2Tpn

Tpn

)
(4.7a)

subject to T ∈ SE(2), (4.7b)

where M is chosen to emulate the intrinsic parameter matrix of a stereo camera (eq. (2.4))

M =

1 0 0.5

1 0 −0.5

 . (4.8)

This is scenario is visualized in fig. 4.3. Following a similar procedure to the 3D problem, we

can re-write this problem as a QCQP. See appendix C for the details. We run a local solver for

many different initial conditions to find the globally optimal solution and take the best result.

The derivation of the local solver can be found in appendix C. On a test problem with three
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Figure 4.4: Investigating tightness of the 2D problem. The blue dashed line denotes the global

minimum cost for a single problem instance, and the bars indicate the cost found by the primal

relaxation both with and without redundant constraints.

landmarks with added pixel-space noise, we observe that, like the 1D and 3D problems, the

primal relaxation is not tight, as shown by the gap between the primal cost and the globally

optimal cost in fig. 4.4. To tighten this problem, we applied the Lasserre hierarchy of order

α = 2. This adds all monomials of degree α = 2 to the problem and their associated redundant

constraints. This results in a tight primal relaxation, as shown in fig. 4.4.

Unfortunately, this straightforward application of the Lasserre hierarchy has a drawback: the

SDP has many more variables and constraints, increasing the solution time. Table 4.1 quantifies

this issue on the 2D and 3D stereo localization problems with just three landmarks. With no

redundant constraints, both problems are tractable but not tight. When adding the redundant

constraints for the Lasserre hierarchy at α = 2, the 3D problem becomes too large to solve in

a reasonable amount of time. Thus, we could not verify if the Lasserre hierarchy at α = 2

could tighten the 3D stereo localization problem with the re-projection error. Nor did we find

the subset of variables and redundant constraints required to tighten the 2D stereo localization

problem.
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Problem Dimension Variables Constraints Solution Time (s)

No Redundant Constraints
2 13 10 0.103

3 22 16 0.650

Lasserre α = 2
2 104 4235 157.394

3 275 27692 NA

Table 4.1: Comparing the computational complexity of the primal relaxation with and without

the Lasserre hierarchy. All problems in both 2D and 3D used three landmarks.
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5 Conclusion

In summary, we have investigated globally optimal algorithms for the stereo camera localiza-

tion problem with re-projection error. First, we formulated the re-projection error problem as a

QCQP and found through experimentation that strong duality does not hold for this problem in

practice. Second, we attempted to tighten the QCQP by adding various redundant constraints

and additional variables, but these redundant constraints did not tighten the problem. Third, we

pivoted to an iterative approach, IterSDP, for solving the stereo localization problem, motivated

by prior work on monocular localization with the back-projection error. Through extensive ex-

perimentation, we found that when IterSDP is paired with a local solver, it was able to find the

globally optimal solution across many problem instances with realistic noise levels. Further,

IterSDP is far more efficient than the primal SDP relaxation of the QCQP, and it is compet-

itive with the local solver in solution time. Finally, we investigated how to tighten the stereo

localization problem by tightening analogous 1D and 2D problems. Future work should try to

tighten the stereo localization problem with re-projection error by

• manually finding redundant constraints or new QCQP formulations, or

• algorithmically searching or constructing a sparse set of the constraints and variables

from the Lasserre hierarchy that tightens the problem while remaining computationally

tractable. This procedure could be applicable to tightening other optimization problems.

This work in tightening the re-projection error problem will have applications in many areas

of robotics, including stereo visual odometry, landmark-based SLAM, and stereo localization,

moving us towards more reliable robotics systems.
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A Back Projection Error Tightness

In this section, we confirm that the primal relaxation of the back-projection error stereo local-

ization problem is tight, as indicated by [17], [29], [30]. The back-projection error problem in

eq. (2.43) is already a QCQP. On the set of 32 simulated problems in section 3.3, we solve the

primal relaxation of this QCQP, and plot the duality gap p⋆− d⋆ across all problems in fig. A.1.

Notice that the duality gap is (machine) zero within this realistic noise range, confirming that

strong duality holds. We used the best solution from a local solver across many initial conditions

to find the globally optimal cost p⋆.
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Figure A.1: A plot of the duality gap of the primal relaxation of the back projection error prob-

lem. d⋆ is the globally optimal value and q⋆ is from the cost from the primal relaxation of the

back-projection error problem.
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B 1D problem

B.1 QCQP Formulation

In this section, we write the 1D problem:

min
x

J(x) =
∑
n

(ωyn − zn)
2 (B.1)

subject to zn(x− ωan) = 1, (B.2)

ω2 = 1, (B.3)

in the standard form of a QCQP in eq. (2.29). First, we define our optimization variables:

x =



x

z1

. . .

zN

ω


, (B.4)

and some helpful matrices:

x = eTxx =
[
1 0 . . . 0

]
x (B.5)

zn = eTznx =
[
0 . . . 1 . . . 0

]
x (B.6)

ω = eTN+1x =
[
0 . . . 0 1

]
x. (B.7)

Then we can re-write our cost in the standard form:

J(x) =
∑
n

(
yne

T
N+1x− eTznx

)2
(B.8)

= xT

(∑
n

(
yne

T
N+1 − eTzn

)T (
yne

T
N+1 − eTzn

))
x, (B.9)

and re-write the homogenization constraint in the standard form:

ω2 = 1 =⇒ xTeN+1e
T
N+1x = 1. (B.10)

48



Finally, for the measurement constraint:

zn (x− ωan) = 1 =⇒ xT
(
eznex − ane

T
zn
eN+1

)
x = 1. (B.11)

B.2 Local Solver

In this section, we develop a local solver for the 1D stereo localization problem given in sec-

tion 4.1.

The cost function for the 1D stereo localization problem is

J(x) =
∑
n

(
yn −

1

x− an

)2

, (B.12)

so we can write the non-linear error functions as

un = yn −
1

x− an
. (B.13)

We assume that x = xop + δx, and linearize gn about xop:

gn ≈ gn(xop) +
∂gn
∂x
|x=xop

δx = gn(xop) +
1

(xop − an)
2 δx = an + bnδx. (B.14)

Finally, we substitute this linearized expression for gn into J(x) and solve for the optimal update

δx∗:

J(x) ≈
∑
n

(an + bnδx)
2 (B.15)

=⇒ ∂J

∂δx
=
∑
n

2(an + bnδx
∗)bn = 0 (B.16)

=⇒ δx∗ =

∑
n anbn∑
n b

2
n

. (B.17)

Therefore the local solver algorithm for the 1D problem is

1. Start with an initial guess or the result from the previous iteration xk.

2. Solve for the optimal update δx∗ =
∑

n anbn∑
n b

2
n

.

3. If δx∗ is small or a maximum number of iterations has been reached, return.

4. Otherwise set xk+1 = xk + δx∗ and repeat.
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C 2D problem

C.1 QCQP Formulation

In this section, we rewrite the 2D problem in the standard form of a QCQP. We begin with the

2D version of the re-projection error, from eq. (4.7):

min
T

J(T) =
N∑

n=1

(
yn −M

1

eT2Tpn

Tpn

)T

Wn

(
yn −M

1

eT2Tpn

Tpn

)
(C.1a)

subject to T ∈ SE(2). (C.1b)

We make the substitution

vn =
Tpn

eT2Tpn

=


un1

1

un2

 . (C.2)

Let

un =

un1

un2

 . (C.3)

Now we can re-write the optimization problem as

min
T

J(T) =
N∑

n=1

(ωyn −Mvn)
T Wn (ωyn −Mvn) (C.4a)

subject to CTC = I (C.4b)(
vne

T
2 − I

)
Tpn = 0 (C.4c)

ω2 = 1 (C.4d)

where

T =

C r

0 1

 =

c1 c2 r

0 0 1

 ∈ SE(2). (C.5)
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We define our optimization variable

x =



c1

c2

r

u1

. . .

uN

ω


∈ R2N+7. (C.6)

From this point, we follow a similar procedure to that described in section 3.2 to re-write the

QCQP in the standard form.

C.2 Local Solver

In this section, we develop a local solver for the 2D stereo localization problem. We parameterize

the 2D pose T with ϕ =
[
x y θ

]T
, where x and y are the position of the camera origin in

the world frame, and θ is the yaw angle of the camera frame with respect to the world frame.

Referring to eq. (4.7), we define the error function as

gn = yn −M
qn

eT2 qn

, qn = Tpn. (C.7)

Then we can write
∂gn

∂ϕ
=

∂gn

∂qn

∂qn

∂ϕ
(C.8)

(C.9)

where
∂gn

∂qn

= −M 1

eT2 qn

+M
qn

(eT2 qn)
2
eT2 (C.10)

and

∂qn

∂ϕ
=


1 0 − sin(θ)pn,x − cos(θ)pn,y

0 1 cos(θ)pn,x − sin(θ)pn,y

0 0 0

 , (C.11)

where pn =
[
pn,x pn,y 1

]T
. We assume ϕ = ϕop + δϕ, where we want to solve for the

optimal update δϕ. We can linearize gn about ϕop:

gn(ϕ) ≈ gn(ϕop) +
∂gn

∂ϕ
|ϕ=ϕop

= βn +∆T
nδϕ. (C.12)
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From here, we can follow a similar procedure to the 3D problem, starting in eq. (2.16); we

substitute this linearized expression into J to obtain a cost that is quadratic in the variable δϕ

and solve for the optimal update δϕ∗. Our final algorithm is:

1. Start with an initial guess or the result from the previous iteration ϕk.

2. Solve for the optimal update δϕ∗.

3. If δϕ∗ is small or a maximum number of iterations has been reached, return.

4. Otherwise set ϕk+1 = ϕk + δϕ∗ and repeat.
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